Back to Search Start Over

Regulation of an inwardly rectifying K+ channel by nitric oxide in cultured human proximal tubule cells.

Authors :
Kazuyoshi, Nakamura
Junko, Hirano
Manabu, Kubokawa
Source :
American Journal of Physiology - Renal Physiology; September 2004, Vol. 287 Issue: 3 pF411-7
Publication Year :
2004

Abstract

We investigated the effects of nitric oxide (NO) on activity of the inwardly rectifying K(+) channel in cultured human proximal tubule cells, using the cell-attached mode of the patch-clamp technique. An inhibitor of NO synthases, N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM), reduced channel activity, which was restored by an NO donor, sodium nitroprusside (SNP; 10 microM) or 8-bromo-cGMP (8-BrcGMP; 100 microM). However, SNP failed to activate the channel in the presence of an inhibitor of soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM). Similarly, the SNP effect was abolished by a protein kinase G (PKG)-specific inhibitor, KT-5823 (1 microM), but not by a protein kinase A-specific inhibitor, KT-5720 (500 nM). Another NO donor, S-nitroso-N-acetyl-D,L-penicillamine (10 microM), mimicked the SNP-induced channel activation. In contrast to the stimulatory effect of SNP at a low dose (10 microM), a higher dose of SNP (1 mM) reduced channel activity, which was not restored by 8-BrcGMP. Recordings of membrane potential with the slow whole cell configuration demonstrated that l-NAME (100 microM) and the high dose of SNP (1 mM) depolarized the cell by 10.1 +/- 2.6 and 9.2 +/- 1.0 mV, respectively, whereas the low dose of SNP (10 microM) hyperpolarized it by 7.1 +/- 0.7 mV. These results suggested that the endogenous NO would contribute to the maintenance of basal activity of this K(+) channel and hence the potential formation via a cGMP/PKG-dependent mechanism, whereas a high dose of NO impaired channel activity independent of cGMP/PKG-mediated processes.

Details

Language :
English
ISSN :
1931857x and 15221466
Volume :
287
Issue :
3
Database :
Supplemental Index
Journal :
American Journal of Physiology - Renal Physiology
Publication Type :
Periodical
Accession number :
ejs6536071