Back to Search Start Over

Layer-Controlled Growth of Single-Crystalline 2D Bi2O2Se Film Driven by Interfacial Reconstruction

Authors :
Kang, Minsoo
Jeong, Han Beom
Shim, Yoonsu
Chai, Hyun-Jun
Kim, Yong-Sung
Choi, Minhyuk
Ham, Ayoung
Park, Cheolmin
Jo, Min-kyung
Kim, Tae Soo
Park, Hyeonbin
Lee, Jaehyun
Noh, Gichang
Kwak, Joon Young
Eom, Taeyong
Lee, Chan-Woo
Choi, Sung-Yool
Yuk, Jong Min
Song, Seungwoo
Jeong, Hu Young
Kang, Kibum
Source :
ACS Nano; January 2024, Vol. 18 Issue: 1 p819-828, 10p
Publication Year :
2024

Abstract

As semiconductor scaling continues to reach sub-nanometer levels, two-dimensional (2D) semiconductors are emerging as a promising candidate for the post-silicon material. Among these alternatives, Bi2O2Se has risen as an exceptionally promising 2D semiconductor thanks to its excellent electrical properties, attributed to its appropriate bandgap and small effective mass. However, unlike other 2D materials, growth of large-scale Bi2O2Se films with precise layer control is still challenging due to its large surface energy caused by relatively strong interlayer electrostatic interactions. Here, we present the successful growth of a wafer-scale (∼3 cm) Bi2O2Se film with precise thickness control down to the monolayer level on TiO2-terminated SrTiO3using metal–organic chemical vapor deposition (MOCVD). Scanning transmission electron microscopy (STEM) analysis confirmed the formation of a [BiTiO4]1–interfacial structure, and density functional theory (DFT) calculations revealed that the formation of [BiTiO4]1–significantly reduced the interfacial energy between Bi2O2Se and SrTiO3, thereby promoting 2D growth. Additionally, spectral responsivity measurements of two-terminal devices confirmed a bandgap increase of up to 1.9 eV in monolayer Bi2O2Se, which is consistent with our DFT calculations. Finally, we demonstrated high-performance Bi2O2Se field-effect transistor (FET) arrays, exhibiting an excellent average electron mobility of 56.29 cm2/(V·s). This process is anticipated to enable wafer-scale applications of 2D Bi2O2Se and facilitate exploration of intriguing physical phenomena in confined 2D systems.

Details

Language :
English
ISSN :
19360851 and 1936086X
Volume :
18
Issue :
1
Database :
Supplemental Index
Journal :
ACS Nano
Publication Type :
Periodical
Accession number :
ejs65042639
Full Text :
https://doi.org/10.1021/acsnano.3c09369