Back to Search
Start Over
Phase Distribution Management for High-Efficiency and Bright Blue Perovskite Light-Emitting Diodes
- Source :
- Nano Energy; 20230101, Issue: Preprints
- Publication Year :
- 2023
-
Abstract
- Quasi-two-dimensional (quasi-2D) perovskite materials have attracted significant attention for application in light-emitting diodes (PeLEDs) due to their unique optical characteristics and extraordinary performance. The inherent multi-quantum well structure will generate a strong quantum confinement effect which is beneficial for the blue emission. However, the efficiency and stability of the quasi-2D blue PeLEDs lag behind their red and green counterparts, which prevents the further commercial application of the PeLEDs. The performance of quasi-2D blue PeLEDs was limited on account of the inefficient phase distribution management, which causes an inefficient energy transfer and severe non-radiative recombination. Herein, we employ guanidine thiocyanate (GASCN) as the pre-deposited film at the bottom of the perovskite film to manage the phase distribution of the PBA2Csn−1PbnBr3n+1quasi-2D perovskite film (where n is the number of [PbBr6]4-sheets, and PBA is phenylbutylammonium). The pre-deposited GASCN can not only inhibit the small n-phase (i.e., n = 1: PBA2PbBr4, and n = 2: PBA2CsPb2Br7) but also avoid the undesired emission redshift from the over-growth of the large n-phase as well as passivate defects of the quasi-2D perovskite film, which accelerates energy transfer efficiently, strengthens the carrier transport, and enhances the luminous efficiency. As a result, the optimized device demonstrated the highest external quantum efficiency (EQE) of 16.40% and a maximum luminance of 8290cdm-2. This strategy provides a new pathway to accurately manage phase distribution of quasi-2D perovskite achieving the high efficiency in blue PeLEDs.
Details
- Language :
- English
- ISSN :
- 22112855
- Issue :
- Preprints
- Database :
- Supplemental Index
- Journal :
- Nano Energy
- Publication Type :
- Periodical
- Accession number :
- ejs64718552
- Full Text :
- https://doi.org/10.1016/j.nanoen.2023.109144