Back to Search Start Over

Deep Learning Performance of Ultra-Widefield Fundus Imaging for Screening Retinal Lesions in Rural Locales

Authors :
Cui, Tingxin
Lin, Duoru
Yu, Shanshan
Zhao, Xinyu
Lin, Zhenzhe
Zhao, Lanqin
Xu, Fabao
Yun, Dongyuan
Pang, Jianyu
Li, Ruiyang
Xie, Liqiong
Zhu, Pengzhi
Huang, Yuzhe
Huang, Hongxin
Hu, Changming
Huang, Wenyong
Liang, Xiaoling
Lin, Haotian
Source :
JAMA Ophthalmology; November 2023, Vol. 141 Issue: 11 p1045-1051, 7p
Publication Year :
2023

Abstract

IMPORTANCE: Retinal diseases are the leading cause of irreversible blindness worldwide, and timely detection contributes to prevention of permanent vision loss, especially for patients in rural areas with limited medical resources. Deep learning systems (DLSs) based on fundus images with a 45° field of view have been extensively applied in population screening, while the feasibility of using ultra-widefield (UWF) fundus image–based DLSs to detect retinal lesions in patients in rural areas warrants exploration. OBJECTIVE: To explore the performance of a DLS for multiple retinal lesion screening using UWF fundus images from patients in rural areas. DESIGN, SETTING, AND PARTICIPANTS: In this diagnostic study, a previously developed DLS based on UWF fundus images was used to screen for 5 retinal lesions (retinal exudates or drusen, glaucomatous optic neuropathy, retinal hemorrhage, lattice degeneration or retinal breaks, and retinal detachment) in 24 villages of Yangxi County, China, between November 17, 2020, and March 30, 2021. INTERVENTIONS: The captured images were analyzed by the DLS and ophthalmologists. MAIN OUTCOMES AND MEASURES: The performance of the DLS in rural screening was compared with that of the internal validation in the previous model development stage. The image quality, lesion proportion, and complexity of lesion composition were compared between the model development stage and the rural screening stage. RESULTS: A total of 6222 eyes in 3149 participants (1685 women [53.5%]; mean [SD] age, 70.9 [9.1] years) were screened. The DLS achieved a mean (SD) area under the receiver operating characteristic curve (AUC) of 0.918 (0.021) (95% CI, 0.892-0.944) for detecting 5 retinal lesions in the entire data set when applied for patients in rural areas, which was lower than that reported at the model development stage (AUC, 0.998 [0.002] [95% CI, 0.995-1.000]; P < .001). Compared with the fundus images in the model development stage, the fundus images in this rural screening study had an increased frequency of poor quality (13.8% [860 of 6222] vs 0%), increased variation in lesion proportions (0.1% [6 of 6222]-36.5% [2271 of 6222] vs 14.0% [2793 of 19 891]-21.3% [3433 of 16 138]), and an increased complexity of lesion composition. CONCLUSIONS AND RELEVANCE: This diagnostic study suggests that the DLS exhibited excellent performance using UWF fundus images as a screening tool for 5 retinal lesions in patients in a rural setting. However, poor image quality, diverse lesion proportions, and a complex set of lesions may have reduced the performance of the DLS; these factors in targeted screening scenarios should be taken into consideration in the model development stage to ensure good performance.

Details

Language :
English
ISSN :
21686165 and 21686173
Volume :
141
Issue :
11
Database :
Supplemental Index
Journal :
JAMA Ophthalmology
Publication Type :
Periodical
Accession number :
ejs64507419
Full Text :
https://doi.org/10.1001/jamaophthalmol.2023.4650