Back to Search
Start Over
Electron– versus Spin–Phonon Coupling Governs the Temperature-Dependent Carrier Dynamics in the Topological Insulator Bi2Te3
- Source :
- Journal of the American Chemical Society; November 2023, Vol. 145 Issue: 47 p25887-25893, 7p
- Publication Year :
- 2023
-
Abstract
- Ultrafast charge and spin dynamics have immense effects on the applications of topological insulators (TIs). By performing spin-adiabatic nonadiabatic molecular dynamics simulations in the presence of electron–phonon (e-ph) and spin–phonon couplings, we investigate temperature-dependent intra- and interband charge and spin relaxation dynamics via the bulk and surface paths in the three-dimensional TI Bi2Te3. The e-phcoupling dominates charge relaxation in the bulk path, and the relaxation rate is positively correlated with temperature due to the large energy gaps and weak spin polarization. Conversely, the relaxation dynamics exhibits an opposite temperature dependence in the surface path because of electron re-excitation and spin mismatching induced by spin–phonon coupling, which arises from small energy gaps and strong spin polarization. The two mechanisms rationalize the charge carriers being long-lived in the bulk and surface phases at low and room temperature, respectively. Additionally, strong thermal fluctuations of the topological states’ magnetic moments destroy the spin-momentum locking and trigger backscattering at room temperature.
Details
- Language :
- English
- ISSN :
- 00027863 and 15205126
- Volume :
- 145
- Issue :
- 47
- Database :
- Supplemental Index
- Journal :
- Journal of the American Chemical Society
- Publication Type :
- Periodical
- Accession number :
- ejs64492070
- Full Text :
- https://doi.org/10.1021/jacs.3c10561