Back to Search Start Over

Optimizing DNNs With Partially Equivalent Transformations and Automated Corrections

Authors :
Wang, Haojie
Zhai, Jidong
Gao, Mingyu
Zhang, Feng
Wang, Tuowei
Ma, Zixuan
Tang, Shizhi
Zheng, Liyan
Wang, Wen
Rong, Kaiyuan
Chen, Yuanyong
Jia, Zhihao
Source :
IEEE Transactions on Computers; December 2023, Vol. 72 Issue: 12 p3546-3560, 15p
Publication Year :
2023

Abstract

Deep neural network (DNN) applications are typically represented by tensor programs. To boost the performance of DNN computations, existing works adopt fully equivalent transformations for tensor program optimization by guaranteeing the equivalence on each element of tensors. However, as there are thousands of elements in a tensor, such optimization misses the opportunities that allow the in-equivalence of minority elements. In this work, we propose <sc>Pet</sc>, the first work that introduces partially equivalent transformations to optimize tensor programs. To maintain the functional equivalence of tensor programs, <sc>Pet</sc> automatically finds and corrects the in-equivalent positions by leveraging the multi-linearity of DNN computations. <sc>Pet</sc> further uses a mutation manager to improve search efficiency. Evaluation results show that <sc>Pet</sc> can achieve up to 1.98<inline-formula><tex-math notation="LaTeX">$\times$</tex-math><alternatives><mml:math><mml:mo>×</mml:mo></mml:math><inline-graphic xlink:href="zhai-ieq1-3307795.gif"/></alternatives></inline-formula> and 2.20<inline-formula><tex-math notation="LaTeX">$\times$</tex-math><alternatives><mml:math><mml:mo>×</mml:mo></mml:math><inline-graphic xlink:href="zhai-ieq2-3307795.gif"/></alternatives></inline-formula> speedups on NVIDIA Tesla A100 and V100 respectively compared with existing DNN frameworks by introducing new optimization opportunities of partially equivalent transformations.

Details

Language :
English
ISSN :
00189340 and 15579956
Volume :
72
Issue :
12
Database :
Supplemental Index
Journal :
IEEE Transactions on Computers
Publication Type :
Periodical
Accession number :
ejs64455975
Full Text :
https://doi.org/10.1109/TC.2023.3307795