Back to Search Start Over

High-VTH E-Mode GaN HEMTs With Robust Gate-Bias-Dependent VTH Stability Enabled by Mg-Doped p-GaN Engineering

Authors :
Jin, Yulei
Zhou, Feng
Xu, Weizong
Wang, Zhengpeng
Zhou, Tianyang
Zhou, Dong
Ren, Fangfang
Xia, Yuanyang
Wu, Leke
Li, Yiheng
Zhu, Tinggang
Chen, Dunjun
Zhang, Rong
Ye, Jiandong
Zheng, Youdou
Lu, Hai
Source :
IEEE Transactions on Electron Devices; November 2023, Vol. 70 Issue: 11 p5596-5602, 7p
Publication Year :
2023

Abstract

Highly stable threshold voltage <inline-formula> <tex-math notation="LaTeX">$({V}_{\text {TH}})$ </tex-math></inline-formula> characteristics are an essential reliability requirement for p -GaN/AlGaN/GaN high-electron-mobility transistors (p-GaN HEMTs) to withstand various gate bias stresses for power applications. In this work, we demonstrate high-<inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> (3.0 V) p-GaN HEMTs with robust <inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> stability by p -GaN gate engineering via Mg doping and activation. The <inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> degradation rates of the resulting device under both pulsed-<inline-formula> <tex-math notation="LaTeX">${I}/{V}$ </tex-math></inline-formula> and bias temperature instability (BTI) stress conditions are less than 10% at high temperatures up to 150°, which is much lower than that of conventional Schottky-type p -GaN HEMTs (20%–30%). Such notable <inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> characteristics are due to the impact ionization (I.I.)-dependent hole compensation under certain gate stress, which effectively alleviates the electron trapping effect and reduces positive <inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> shift. The I.I. occurring in the fully depleted p -GaN layer has been confirmed by both positive temperature-dependent gate breakdown characteristics and numerical simulations. Furthermore, shallow- and deep-level hole traps are identified in the gate-stack of high-<inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> devices by performing the deep-level transient spectroscopy (DLTS) technique. Consequently, the trapping effect associated with hole traps may also alleviate the undesired electron-trapping-induced <inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> shift. These results provide a critical understanding of the <inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> stability of the high-<inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> p -GaN HEMTs (HVT-HEMTs) and important design guidance for commercial device development.

Details

Language :
English
ISSN :
00189383 and 15579646
Volume :
70
Issue :
11
Database :
Supplemental Index
Journal :
IEEE Transactions on Electron Devices
Publication Type :
Periodical
Accession number :
ejs64349518
Full Text :
https://doi.org/10.1109/TED.2023.3315252