Back to Search
Start Over
Facile Preparation of Hydrogel-Coated Surfaces with Antifouling and Salt Resistance for Efficient Solar-Driven Water Evaporation
- Source :
- ACS Applied Materials & Interfaces; November 2023, Vol. 15 Issue: 43 p50196-50205, 10p
- Publication Year :
- 2023
-
Abstract
- Hydrogel-based evaporators are a promising strategy to obtain freshwater from seawater and sewage. However, the time-consuming and energy-consuming methods used in hydrogel preparation, as well as their limited scalability, are major factors that hinder the development of a hydrogel-based evaporator. Herein, a facile and scalable strategy was designed to prepare a hydrogel-coated evaporator to realize efficient solar-driven water evaporation. The hydrogel coating layer is composed of a robust 3D network formed by tannic acid (TA) and poly(vinyl alcohol) (PVA) through a hydrogen bond. With the assistance of TA surface modifier, carbon black (CB) is uniformly distributed within the hydrogel matrix, endowing the coating with remarkable photothermal properties. In addition, Fe3+is deposited on the surface of the hydrogel coating through metal coordination with TA, further improving the light absorption of the coating. Due to the synergistic effect of CB and Fe3+, the hydrogel-coated foam exhibited excellent photothermal properties. The water evaporation rate reached 3.64 kg m–2h–1under 1 sun irradiation. Because of the hydration ability of PVA hydrogel and the large porous structure of the foam, the hydrogel-coated foam demonstrated excellent antifouling performance and salt resistance. This study provides a facile method for designing and manufacturing high-performance solar-driven water evaporation materials.
Details
- Language :
- English
- ISSN :
- 19448244
- Volume :
- 15
- Issue :
- 43
- Database :
- Supplemental Index
- Journal :
- ACS Applied Materials & Interfaces
- Publication Type :
- Periodical
- Accession number :
- ejs64303220
- Full Text :
- https://doi.org/10.1021/acsami.3c11299