Back to Search Start Over

Deep Learning Approach for Optimal Localization Using an mm-Wave Sensor

Authors :
Amjad, Bisma
Ahmed, Qasim Z.
Lazaridis, Pavlos I.
Khan, Faheem A.
Hafeez, Maryam
Zaharis, Zaharias D.
Source :
IEEE Transactions on Instrumentation and Measurement; 2023, Vol. 72 Issue: 1 p1-15, 15p
Publication Year :
2023

Abstract

Short-range indoor localization is one of the key necessities in automation industries and healthcare setups. With its increasing demand, the need for more precise positioning systems is rapidly increasing. Millimeter-wave (mm-wave) technology is emerging to enable highly precise localization performance. However, due to the limited availability of low-cost mm-wave sensors, it is challenging to accelerate research on real data. Furthermore, noise due to the hardware components of a sensor incurs perturbation in the received signal, which corrupts the estimation of range and the angle of arrival (AoA). Due to the huge success of data-driven algorithms in solving regression problems, we propose a data-driven approach, which employs two deep learning (DL)-based regression models, i.e., dense neural network and convolutional neural network, and compare their performance with two machine learning-based regression models, linear regression and support vector regression, to reduce errors in the estimate of AoA and range obtained via an mm-wave sensor. Our main goal is to optimize the localization measurements acquired from a low-cost mm-wave sensor for short-range applications. This will accelerate the development of proof of concept and foster research on cost-effective mm-wave-based indoor positioning systems. All experiments were conducted using over-the-air data collected with an mm-wave sensor, and the validity of the experiments was verified in unseen environments. The results obtained from our experimental evaluations, both for in-sample and out-of-sample testing, indicate improvements in the estimation of AoA and range with our proposed DL models. The improvements achieved were greater than 15% for AoA estimation and over 85% for range estimation compared to the baseline methods.

Details

Language :
English
ISSN :
00189456 and 15579662
Volume :
72
Issue :
1
Database :
Supplemental Index
Journal :
IEEE Transactions on Instrumentation and Measurement
Publication Type :
Periodical
Accession number :
ejs64087821
Full Text :
https://doi.org/10.1109/TIM.2023.3311055