Back to Search Start Over

Sodium Layered/Tunnel Intergrowth Oxide Cathodes: Formation Process, Interlocking Chemistry, and Electrochemical Performance

Authors :
Su, Yu
Zhang, Ning-Ning
Li, Jia-Yang
Liu, Yifeng
Hu, Hai-Yan
Wang, Jingqiang
Li, Hongwei
Kong, Ling-Yi
Jia, Xin-Bei
Zhu, Yan-Fang
Chen, Shuangqiang
Wang, Jia-Zhao
Dou, Shi-Xue
Chou, Shulei
Xiao, Yao
Source :
ACS Applied Materials & Interfaces; September 2023, Vol. 15 Issue: 38 p44839-44847, 9p
Publication Year :
2023

Abstract

Manganese-based layered oxides are prospective cathode materials for sodium-ion batteries (SIBs) due to their low cost and high theoretical capacities. The biphasic intergrowth structure of layered cathode materials is essential for improving the sodium storage performance, which is attributed to the synergistic effect between the two phases. However, the in-depth formation mechanism of biphasic intergrowth materials remains unclear. Herein, the layered/tunnel intergrowth Na0.6MnO2(LT-NaMO) as a model material was successfully prepared, and their formation processes and electrochemical performance were systematically investigated. In situ high-temperature X-ray diffraction displays the detailed evolution process and excellent thermal stability of the layered/tunnel intergrowth structure. Furthermore, severe structural strain and large lattice volume changes are significantly mitigated by the interlocking effect between the phase interfaces, which further enhances the structural stability of the cathode materials during the charging/discharging process. Consequently, the LT-NaMO cathode displays fast Na+transport kinetics with a remarkable capacity retention of ∼70.5% over 300 cycles at 5C, and its assembled full cell with hard carbon also exhibits high energy density. These findings highlight the superior electrochemical performance of intergrowth materials due to interlocking effects between layered and tunnel structures and also provide unique insights into the construction of intergrowth cathode materials for SIBs.

Details

Language :
English
ISSN :
19448244
Volume :
15
Issue :
38
Database :
Supplemental Index
Journal :
ACS Applied Materials & Interfaces
Publication Type :
Periodical
Accession number :
ejs63871446
Full Text :
https://doi.org/10.1021/acsami.3c07164