Cite
MLMSA: Multilabel Multiside-Channel-Information Enabled Deep Learning Attacks on APUF Variants
MLA
Gao, Yansong, et al. “MLMSA: Multilabel Multiside-Channel-Information Enabled Deep Learning Attacks on APUF Variants.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 9, Sept. 2023, pp. 2863–76. EBSCOhost, https://doi.org/10.1109/TCAD.2023.3236563.
APA
Gao, Y., Yao, J., Pang, L., Yang, W., Fu, A., Al-Sarawi, S. F., & Abbott, D. (2023). MLMSA: Multilabel Multiside-Channel-Information Enabled Deep Learning Attacks on APUF Variants. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(9), 2863–2876. https://doi.org/10.1109/TCAD.2023.3236563
Chicago
Gao, Yansong, Jianrong Yao, Lihui Pang, Wei Yang, Anmin Fu, Said F. Al-Sarawi, and Derek Abbott. 2023. “MLMSA: Multilabel Multiside-Channel-Information Enabled Deep Learning Attacks on APUF Variants.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42 (9): 2863–76. doi:10.1109/TCAD.2023.3236563.