Back to Search Start Over

Reducing Bonding Temperature and Energy Consumption in Electronic Packaging Using Flash Electro-Thermal Carbon Fiber Heating Elements

Authors :
Park, Seong Yeon
On, Seung Yoon
Kim, Junmo
Lee, Jeonyoon
Kim, Taek-Soo
Wardle, Brian L.
Kim, Seong Su
Source :
ACS Applied Materials & Interfaces; 20230101, Issue: Preprints
Publication Year :
2023

Abstract

Semiconductor packaging based on an epoxy molding compound (EMC) currently has several disadvantages including warpage, limited processing area, and variability that all negatively affect cost and production yield. We propose a facile EMC molding process method using a flash electro-thermal carbon fiber heating (FE-CH) device based on carbon fiber-based papers to manufacture an EMC molded to a copper substrate (EMC/Cu bi-layer package) via Joule heating, and using this device, a modified cure cycle that combines the conventional cure cycle (CCC) with rapid cooling was performed using FE-CH to reduce the curvature of the EMC/Cu bi-layer package. Compared to the conventional hot press process, which uses 3.17 MW of power, the FE-CH process only uses 32.87 kW, resulting in a power consumption reduction of over 100 times when following the CCC. Furthermore, the FE-CH-cured EMC/Cu bi-layer package exhibits mechanical properties equivalent to those of a hot press-cured specimen, including the degree of cure, elastic modulus, curvature, bonding temperature, residual strain, and peel strength. The modified cure cycle using the FE-CH results in a 31% reduction in residual strain, a 32% reduction in curvature, and a 47% increase in peel strength compared to the CCC, indicating that this new process method is very promising for reducing a semiconductor package’s price by reducing the process cost and warpage.

Details

Language :
English
ISSN :
19448244
Issue :
Preprints
Database :
Supplemental Index
Journal :
ACS Applied Materials & Interfaces
Publication Type :
Periodical
Accession number :
ejs63676511
Full Text :
https://doi.org/10.1021/acsami.3c06145