Back to Search Start Over

Effect of Single Spinel Phase Crystallization on Drain-Induced-Barrier-Lowering in Submicron Length IZTO Thin-Film Transistors

Authors :
Kim, Gwang-Bok
Kim, Taikyu
Choi, Cheol Hee
Chung, Sang Won
Jeong, Jae Kyeong
Source :
IEEE Electron Device Letters; 2023, Vol. 44 Issue: 7 p1132-1135, 4p
Publication Year :
2023

Abstract

This study shows the effect of single spinel phase crystallization on drain-induced barrier lowering (DIBL) of indium-zinc-tin-oxide (IZTO) thin-film transistors (TFTs) with submicron channel length. The 0.9-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-long amorphous IZTO (a-IZTO) TFT shows a poor DIBL of 318 mV/V. In contrast, a significant improvement in the DIBL is achieved in the single spinel phase IZTO (s-IZTO) TFT, which could be attributed to the suppression of lateral diffusion of oxygen vacancy (<inline-formula> <tex-math notation="LaTeX">$\text{V}_{\text {O}}{)}$ </tex-math></inline-formula> and low V<subscript>O</subscript> defects through crystallization-induced enforcement of metal-oxygen bonds. Consequently, 0.9-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-long s-IZTO TFT reveals a small DIBL of 92 mV/V as well as a high field-effect mobility of 90.1 cm<superscript>2</superscript>/Vs and a low subthreshold swing of 0.1 V/dec. In addition, reliability against external bias temperature stress is considerably improved through single-phase crystallization, leading to an insignificant threshold voltage shift of +0.4 (−0.4) V under positive (negative) bias stress with electric field of 2 (−2) MV/cm at 60 °C for 10,000 s, respectively, in the 0.9-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>-long s-IZTO TFT.

Details

Language :
English
ISSN :
07413106 and 15580563
Volume :
44
Issue :
7
Database :
Supplemental Index
Journal :
IEEE Electron Device Letters
Publication Type :
Periodical
Accession number :
ejs63411312
Full Text :
https://doi.org/10.1109/LED.2023.3274670