Back to Search Start Over

Development and Validation of Nerve-Targeted Bacteriochlorin Sensors

Authors :
Hernández-Gil, Javier
Chow, Chun Yuen
Chatras, Hugo
de Souza França, Paula Demétrio
Samuels, Zachary V.
Cornejo, Mike
King, Glenn F.
Lewis, Jason S.
Reiner, Thomas
Gonzales, Junior
Source :
Journal of the American Chemical Society; July 2023, Vol. 145 Issue: 26 p14276-14287, 12p
Publication Year :
2023

Abstract

We report an innovative approach to producing bacteriochlorins (bacs) via formal cycloaddition by subjecting a porphyrin to a trimolecular reaction. Bacs are near-infrared probes with the intrinsic ability to serve in multimodal imaging. However, despite their ability to fluoresce and chelate metal ions, existing bacs have thus offered limited ability to label biomolecules for target specificity or have lacked chemical purity, limiting their use in bio-imaging. In this work, bacs allowed a precise and controlled appending of clickable linkers, lending the porphyrinoids substantially more chemical stability, clickability, and solubility, rendering them more suitable for preclinical investigation. Our bac probes enable the targeted use of biomolecules in fluorescence imaging and Cerenkov luminescence for guided intraoperative imaging. Bacs’ capacity for chelation provides opportunities for use in non-invasive positron emission tomography/computed tomography. Herein, we report the labeling of bacs with Hs1a, a (NaV1.7)-sodium-channel-binding peptide derived from the Chinese tarantula Cyriopagopus schmidtito yield Bac-Hs1a and radiolabeled Hs1a, which shuttles our bac sensor(s) to mouse nerves. In vivo, the bac sensor allowed us to observe high signal-to-background ratios in the nerves of animals injected with fluorescent Bac-Hs1a and radiolabeled Hs1a in all imaging modes. This study demonstrates that Bac-Hs1a and [64Cu]Cu-Bac-Hs1a accumulate in peripheral nerves, providing contrast and utility in the preclinical space. For the chemistry and bio-imaging fields, this study represents an exciting starting point for the modular manipulation of bacs, their development and use as probes for diagnosis, and their deployment as formidable multiplex nerve-imaging agents for use in routine imaging experiments.

Details

Language :
English
ISSN :
00027863 and 15205126
Volume :
145
Issue :
26
Database :
Supplemental Index
Journal :
Journal of the American Chemical Society
Publication Type :
Periodical
Accession number :
ejs63347262
Full Text :
https://doi.org/10.1021/jacs.3c02520