Back to Search Start Over

Towards critical and supercritical electromagnetic fields

Authors :
Marklund, M.
Blackburn, T. G.
Gonoskov, A.
Magnusson, J.
Bulanov, S. S.
Ilderton, A.
Source :
High Power Laser Science and Engineering; March 2023, Vol. 11 Issue: 1
Publication Year :
2023

Abstract

AbstractThe availability of ever stronger, laser-generated electromagnetic fields underpins continuing progress in the study and application of nonlinear phenomena in basic physical systems, ranging from molecules and atoms to relativistic plasmas and quantum electrodynamics. This raises the question: how far will we be able to go with future lasers? One exciting prospect is the attainment of field strengths approaching the Schwinger critical field ${E}_{\mathrm{cr}}$ in the laboratory frame, such that the field invariant ${E}^2-{c}^2{B}^2>{E}_{\mathrm{cr}}^2$ is reached. The feasibility of doing so has been questioned, on the basis that cascade generation of dense electron–positron plasma would inevitably lead to absorption or screening of the incident light. Here we discuss the potential for future lasers to overcome such obstacles, by combining the concept of multiple colliding laser pulses with that of frequency upshifting via a tailored laser–plasma interaction. This compresses the electromagnetic field energy into a region of nanometre size and attosecond duration, which increases the field magnitude at fixed power but also suppresses pair cascades. Our results indicate that laser facilities with peak power of tens of PW could be capable of reaching ${E}_{\mathrm{cr}}$ . Such a scenario opens up prospects for the experimental investigation of phenomena previously considered to occur only in the most extreme environments in the universe.

Details

Language :
English
ISSN :
20954719 and 20523289
Volume :
11
Issue :
1
Database :
Supplemental Index
Journal :
High Power Laser Science and Engineering
Publication Type :
Periodical
Accession number :
ejs62802301
Full Text :
https://doi.org/10.1017/hpl.2022.46