Back to Search Start Over

Successful kinetic impact into an asteroid for planetary defence

Authors :
Daly, R. Terik
Ernst, Carolyn M.
Barnouin, Olivier S.
Chabot, Nancy L.
Rivkin, Andrew S.
Cheng, Andrew F.
Adams, Elena Y.
Agrusa, Harrison F.
Abel, Elisabeth D.
Alford, Amy L.
Asphaug, Erik I.
Atchison, Justin A.
Badger, Andrew R.
Baki, Paul
Ballouz, Ronald-L.
Bekker, Dmitriy L.
Bellerose, Julie
Bhaskaran, Shyam
Buratti, Bonnie J.
Cambioni, Saverio
Chen, Michelle H.
Chesley, Steven R.
Chiu, George
Collins, Gareth S.
Cox, Matthew W.
DeCoster, Mallory E.
Ericksen, Peter S.
Espiritu, Raymond C.
Faber, Alan S.
Farnham, Tony L.
Ferrari, Fabio
Fletcher, Zachary J.
Gaskell, Robert W.
Graninger, Dawn M.
Haque, Musad A.
Harrington-Duff, Patricia A.
Hefter, Sarah
Herreros, Isabel
Hirabayashi, Masatoshi
Huang, Philip M.
Hsieh, Syau-Yun W.
Jacobson, Seth A.
Jenkins, Stephen N.
Jensenius, Mark A.
John, Jeremy W.
Jutzi, Martin
Kohout, Tomas
Krueger, Timothy O.
Laipert, Frank E.
Lopez, Norberto R.
Luther, Robert
Lucchetti, Alice
Mages, Declan M.
Marchi, Simone
Martin, Anna C.
McQuaide, Maria E.
Michel, Patrick
Moskovitz, Nicholas A.
Murphy, Ian W.
Murdoch, Naomi
Naidu, Shantanu P.
Nair, Hari
Nolan, Michael C.
Ormö, Jens
Pajola, Maurizio
Palmer, Eric E.
Peachey, James M.
Pravec, Petr
Raducan, Sabina D.
Ramesh, K. T.
Ramirez, Joshua R.
Reynolds, Edward L.
Richman, Joshua E.
Robin, Colas Q.
Rodriguez, Luis M.
Roufberg, Lew M.
Rush, Brian P.
Sawyer, Carolyn A.
Scheeres, Daniel J.
Scheirich, Petr
Schwartz, Stephen R.
Shannon, Matthew P.
Shapiro, Brett N.
Shearer, Caitlin E.
Smith, Evan J.
Steele, R. Joshua
Steckloff, Jordan K.
Stickle, Angela M.
Sunshine, Jessica M.
Superfin, Emil A.
Tarzi, Zahi B.
Thomas, Cristina A.
Thomas, Justin R.
Trigo-Rodríguez, Josep M.
Tropf, B. Teresa
Vaughan, Andrew T.
Velez, Dianna
Waller, C. Dany
Wilson, Daniel S.
Wortman, Kristin A.
Zhang, Yun
Source :
Nature; April 2023, Vol. 616 Issue: 7957 p443-447, 5p
Publication Year :
2023

Abstract

Although no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation1,2. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid1–3. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation1. NASA’s Double Asteroid Redirection Test (DART) mission is a full-scale test of kinetic impact technology. The mission’s target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by the impact of the DART spacecraft4. Although past missions have utilized impactors to investigate the properties of small bodies5,6, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft’s autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in the orbit of Dimorphos7demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary.

Details

Language :
English
ISSN :
00280836 and 14764687
Volume :
616
Issue :
7957
Database :
Supplemental Index
Journal :
Nature
Publication Type :
Periodical
Accession number :
ejs62797232
Full Text :
https://doi.org/10.1038/s41586-023-05810-5