Back to Search
Start Over
Ultralow Energy Domain Wall Device for Spin-Based Neuromorphic Computing
- Source :
- ACS Nano; 20230101, Issue: Preprints
- Publication Year :
- 2023
-
Abstract
- Neuromorphic computing (NC) is gaining wide acceptance as a potential technology to achieve low-power intelligent devices. To realize NC, researchers investigate various types of synthetic neurons and synaptic devices, such as memristors and spintronic devices. In comparison, spintronics-based neurons and synapses have potentially higher endurance. However, for realizing low-power devices, domain wall (DW) devices that show DW motion at low energies─typically below pJ/bit─are favored. Here, we demonstrate DW motion at current densities as low as 106A/m2by engineering the β-W spin–orbit coupling (SOC) material. With our design, we achieve ultralow pinning fields and current density reduction by a factor of 104. The energy required to move the DW by a distance of about 18.6 μm is 0.4 fJ, which translates into the energy consumption of 27 aJ/bit for a bit-length of 1 μm. With a meander DW device configuration, we have established a controlled DW motion for synapse applications and have shown the direction to make ultralow energy spin-based neuromorphic elements.
Details
- Language :
- English
- ISSN :
- 19360851 and 1936086X
- Issue :
- Preprints
- Database :
- Supplemental Index
- Journal :
- ACS Nano
- Publication Type :
- Periodical
- Accession number :
- ejs62589776
- Full Text :
- https://doi.org/10.1021/acsnano.2c09744