Back to Search
Start Over
Efficient activation of peracetic acid viaa defect-rich carbon nanotube@Co3O4three-dimensional network for antibiotic removal: mechanism insights and practical water remediationElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2en01088g
- Source :
- Environmental Science: Nano; 2023, Vol. 10 Issue: 2 p528-538, 11p
- Publication Year :
- 2023
-
Abstract
- Peracetic acid (PAA)-based advanced oxidation processes have garnered increasing attention for eliminating organic pollutants in wastewater treatment. However, they suffer from poor catalytic efficiency and insufficient potential for practical applications. Herein, we report a defect-rich carbon nanotube@Co3O4nanosphere (d-CNTs@Co3O4-NS) catalyst with a unique three-dimensional network that can activate PAA for antibiotic remediation. The unique, highly strained reaction sites of d-CNTs@Co3O4-NS enabled the efficient activation of PAA, exhibiting ultra-high removal rates of seven types of antibiotics within 30 min. 18O isotope labeling, electron paramagnetic resonance spectroscopy, and electrochemical tests revealed that high-valent cobalt-oxo species Co(iv) and direct electron transfer pathways accounted for the removal of various antibiotics. The continuous-flow reaction at trace concentrations of antibiotics (μg L−1) and the practical application evaluation indicate that the d-CNTs@Co3O4-NS/PAA system is an efficacious approach for the purification of antibiotics in ambient waterways. This study offers a distinct technique for the design of environment-related functional materials and practical water remediation.
Details
- Language :
- English
- ISSN :
- 20518153 and 20518161
- Volume :
- 10
- Issue :
- 2
- Database :
- Supplemental Index
- Journal :
- Environmental Science: Nano
- Publication Type :
- Periodical
- Accession number :
- ejs62268463
- Full Text :
- https://doi.org/10.1039/d2en01088g