Back to Search Start Over

DNA-Programed Plasmon Rulers Decrypt Single-Receptor Dimerization on Cell Membrane

Authors :
Wang, Jin
Song, Juan
Zhang, Xian
Wang, Shu-Min
Kang, Bin
Li, Xiang-Ling
Chen, Hong-Yuan
Xu, Jing-Juan
Source :
Journal of the American Chemical Society; January 2023, Vol. 145 Issue: 2 p1273-1284, 12p
Publication Year :
2023

Abstract

Decrypting the dynamics of receptor dimerization on cell membranes bears great importance in identifying the mechanisms regulating diverse cellular activities. In this regard, long-term monitoring of single-molecule behavior during receptor dimerization allows deepening insight into the dimerization process and tracking of the behavior of individual receptors, yet this remains to be realized. Herein, real-time observation of the receptor tyrosine kinases family (RTKs) at single-molecule level based on plasmon rulers was achieved for the first time, which enabled precise regulation and dynamic monitoring of the dimerization process by DNA programming with excellent photostability. Additionally, those nanoprobes demonstrated substantial application in the regulation of RTKs protein dimerization/phosphorylation and activation of downstream signaling pathways. The proposed nanoprobes hold considerable potential for elucidating the molecular mechanisms of single-receptor dimerization as well as the conformational transitions upon dimerization, providing a new paradigm for the precise manipulation and monitoring of specific single-receptor crosslink events in biological systems.

Details

Language :
English
ISSN :
00027863 and 15205126
Volume :
145
Issue :
2
Database :
Supplemental Index
Journal :
Journal of the American Chemical Society
Publication Type :
Periodical
Accession number :
ejs61624578
Full Text :
https://doi.org/10.1021/jacs.2c11201