Back to Search Start Over

Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2and ZmSTP20in maize disease resistance

Authors :
MA, Yu-xin
ZHOU, Zhi-jun
CAO, Hong-zhe
ZHOU, Fan
SI, He-long
ZANG, Jin-ping
XING, Ji-hong
ZHANG, Kang
DONG, Jin-gao
Source :
Journal of Integrative Agriculture; November 2023, Vol. 22 Issue: 11 p3458-3473, 16p
Publication Year :
2023

Abstract

Sugar is an indispensable source of energy for plant growth and development, and it requires the participation of sugar transporter proteins (STPs) for crossing the hydrophobic barrier in plants. Here, we systematically identified the genes encoding sugar transporters in the genome of maize (Zea maysL.), analyzed their expression patterns under different conditions, and determined their functions in disease resistance. The results showed that the mazie sugar transporter family contained 24 members, all of which were predicted to be distributed on the cell membrane and had a highly conserved transmembrane transport domain. The tissue-specific expression of the maize sugar transporter genes was analyzed, and the expression level of these genes was found to be significantly different in different tissues. The analysis of biotic and abiotic stress data showed that the expression levels of the sugar transporter genes changed significantly under different stress factors. The expression levels of ZmSTP2and ZmSTP20continued to increase following Fusarium graminearuminfection. By performing disease resistance analysis of zmstp2and zmstp20mutants, we found that after inoculation with Cochliobolus carbonum, Setosphaeria turcica, Cochliobolus heterostrophus, and F. graminearum, the lesion area of the mutants was significantly higher than that of the wild-type B73 plant. In this study, the genes encoding sugar transporters in maize were systematically identified and analyzed at the whole genome level. The expression patterns of the sugar transporter-encoding genes in different tissues of maize and under biotic and abiotic stresses were revealed, which laid an important theoretical foundation for further elucidation of their functions.

Details

Language :
English
ISSN :
20953119
Volume :
22
Issue :
11
Database :
Supplemental Index
Journal :
Journal of Integrative Agriculture
Publication Type :
Periodical
Accession number :
ejs61566594
Full Text :
https://doi.org/10.1016/j.jia.2022.12.014