Back to Search Start Over

First Demonstration of Ferroelectric Tunnel Thin-Film Transistor Nonvolatile Memory With Polycrystalline-Silicon Channel and HfZrO Gate Dielectric<italic/>

Authors :
Ma, William Cheng-Yu
Su, Chun-Jung
Kao, Kuo-Hsing
Lee, Yao-Jen
Lin, Ju-Heng
Wu, Pin-Hua
Chang, Jui-Che
Yen, Cheng-Lun
Tseng, Hsin-Chun
Liao, Hsu-Tang
Chou, Yu-Wen
Chiu, Min-Yu
Chen, Yan-Qing
Source :
IEEE Transactions on Electron Devices; November 2022, Vol. 69 Issue: 11 p6072-6077, 6p
Publication Year :
2022

Abstract

In this work, the nonvolatile memory constructed on the tunnel thin-film transistors (tunnel-TFTs) using polycrystalline-silicon channel featuring ferroelectric HfZrOx layer is demonstrated for the first time. When the pulse voltages of program (PG) and erase (ER) are, respectively, 3.5 and −2 V with the pulsewidth of &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;$1 ~\mu \text{s}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;, the threshold voltage modulation amount of the ferroelectric tunnel-TFT can reach −0.524 and 0.496 V, respectively. In addition, the endurance behaviors of the ferroelectric tunnel-TFT exhibit a strong PG/ER pulsewidth dependence. The wake-up effect of the ferroelectric layer becomes more pronounced as increasing the PG/ER pulsewidth. Moreover, the increase of the PG/ER pulsewidth also causes the ferroelectric tunnel-TFT to be subjected to the electrical dynamic stress effect, leading to the degradation of the subthreshold swing (SS) and the electron trapping effect. When the pulsewidth is 100 ns, the endurance is mainly dominated by the fatigue effect of the ferroelectric layer and the degradation of the SS. When the pulsewidth increases to &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;$1 ~\mu \text{s}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;, the endurance is mainly dominated by the electron trapping effect of the ferroelectric layer in addition to the fatigue effect. The retention of the ferroelectric tunnel-TFT exhibits stable behavior at 50 &#176;C. Consequently, the ferroelectric tunnel-TFT exhibits sufficient electrical performance and can be integrated with display panels and various sensor systems on smart wearable devices for edge computing applications.

Details

Language :
English
ISSN :
00189383 and 15579646
Volume :
69
Issue :
11
Database :
Supplemental Index
Journal :
IEEE Transactions on Electron Devices
Publication Type :
Periodical
Accession number :
ejs61064802
Full Text :
https://doi.org/10.1109/TED.2022.3208847