Back to Search Start Over

Influence of nitrate supplementation on in-vitromethane emission, milk production, ruminal fermentation, and microbial methanotrophs in dairy cows fed at two forage levels

Authors :
Sharifi, Majid
Taghizadeh, Akbar
Hosseinkhani, Ali
Palangi, Valiollah
Macit, Muhlis
Salem, Abdelfattah Z. M.
Elghndour, Mona M.M.Y.
Abachi, Soheila
Source :
Annals of Animal Science; July 2022, Vol. 22 Issue: 3 p1015-1026, 12p
Publication Year :
2022

Abstract

Modifying the chemical composition of a diet can be a good strategy for reducing methane emission in the rumen. However, this strategy can have adverse effects on the ruminal microbial flora. The aim of our study was to reduce methane without disturbing ruminal function by stimulating the growth and propagation of methanotrophs. In this study, we randomly divided twenty multiparous Holstein dairy cows into 4 groups in a 2×2 factorial design with two forage levels (40% and 60%) and two nitrate supplementation levels (3.5% and zero). We examined the effect of experimental diets on cow performance, ruminal fermentation, blood metabolites and changes of ruminal microbial flora throughout the experimental period (45-day). Additionally, in vitromethane emission was evaluated. Animals fed diet with 60% forage had greater dry matter intake (DMI) and milk fat content, but lower lactose and milk urea content compared with those fed 40% forage diet. Moreover, nitrate supplementation had no significant effect on DMI and milk yield. Furthermore, the interactions showed that nitrate reduces DMI and milk fat independently of forage levels. Our findings showed that nitrate can increase ammonia concentration, pH, nitrite, and acetate while reducing the total volatile fatty acids concentration, propionate, and butyrate in the rumen. With increasing nitrate, methane emission was considerably decreased possibly due to the stimulated growth of Fibrobacteria, Proteobacteria, type II Methanotrophs, and Methanoperedense nitroreducens, especially with high forage level. Overall, nitrate supplementation could potentially increase methane oxidizing microorganisms without adversely affecting cattle performance.

Details

Language :
English
ISSN :
16423402 and 23008733
Volume :
22
Issue :
3
Database :
Supplemental Index
Journal :
Annals of Animal Science
Publication Type :
Periodical
Accession number :
ejs60380653
Full Text :
https://doi.org/10.2478/aoas-2021-0087