Back to Search Start Over

Single-Atom Pt Boosting Electrochemical Nonenzymatic Glucose Sensing on Ni(OH)2/N-Doped Graphene

Authors :
Long, Baojun
Zhao, Yuanmeng
Cao, Peiyu
Wei, Wen
Mo, Yan
Liu, Juejing
Sun, Cheng-Jun
Guo, Xiaofeng
Shan, Changsheng
Zeng, Ming-Hua
Source :
Analytical Chemistry; February 2022, Vol. 94 Issue: 4 p1919-1924, 6p
Publication Year :
2022

Abstract

Conventional nanomaterials in electrochemical nonenzymatic sensing face huge challenge due to their complex size-, surface-, and composition-dependent catalytic properties and low active site density. In this work, we designed a single-atom Pt supported on Ni(OH)2nanoplates/nitrogen-doped graphene (Pt1/Ni(OH)2/NG) as the first example for constructing a single-atom catalyst based electrochemical nonenzymatic glucose sensor. The resulting Pt1/Ni(OH)2/NG exhibited a low anode peak potential of 0.48 V and high sensitivity of 220.75 μA mM–1cm–2toward glucose, which are 45 mV lower and 12 times higher than those of Ni(OH)2, respectively. The catalyst also showed excellent selectivity for several important interferences, short response time of 4.6 s, and high stability over 4 weeks. Experimental and density functional theory (DFT) calculated results reveal that the improved performance of Pt1/Ni(OH)2/NG could be attributed to stronger binding strength of glucose on single-atom Pt active centers and their surrounding Ni atoms, combined with fast electron transfer ability by the adding of the highly conductive NG. This research sheds light on the applications of SACs in the field of electrochemical nonenzymatic sensing.

Details

Language :
English
ISSN :
00032700 and 15206882
Volume :
94
Issue :
4
Database :
Supplemental Index
Journal :
Analytical Chemistry
Publication Type :
Periodical
Accession number :
ejs58613812
Full Text :
https://doi.org/10.1021/acs.analchem.1c04912