Back to Search Start Over

A comparative evaluation of machine learning algorithms and an improved optimal model for landslide susceptibility: a case study

Authors :
Liu, Yue
Xu, Peihua
Cao, Chen
Shan, Bo
Zhu, Kuanxing
Ma, Qiuyang
Zhang, Zongshuo
Yin, Han
Source :
Geomatics, Natural Hazards and Risk; January 2021, Vol. 12 Issue: 1 p1973-2001, 29p
Publication Year :
2021

Abstract

AbstractIn this study, four representative machine learning methods (support vector machine (SVM), maximum entropy (MaxEnt), random forest (RF), and artificial neural network (ANN)) were employed to construct a landslide susceptibility map (LSM) in Xulong Gully (XLG), southwest China. The models were subsequently compared in order to select the best-performing model. This model was further improved to optimize the machine learning method. A total of 16 layers were extracted from the collected data and employed as conditional factors for the correlation analysis and subsequent modelling. The LSMs were then divided into four levels (very high susceptibility (VH), high susceptibility (H), moderate susceptibility (M) and low susceptibility (L)). The results were verified by receiver operating characteristic (ROC) curves, Root Mean Squared Error (RMSE) and Frequency Ratio (FR). The higher of the area under ROC curve (AUC) and the lower the RMSE, the more accurate and stable the performance. Following the factor performance analysis, the optimal SVM model was linearity improved to the Trace Ratio Criterion (TRC)-SVM, with a better performance and the ability to overcome the factor defect. The comprehensive comparisons and proposed LSM can support future research, as well as local authorities in the development of landslide remission strategies.

Details

Language :
English
ISSN :
19475705 and 19475713
Volume :
12
Issue :
1
Database :
Supplemental Index
Journal :
Geomatics, Natural Hazards and Risk
Publication Type :
Periodical
Accession number :
ejs58537644
Full Text :
https://doi.org/10.1080/19475705.2021.1955018