Back to Search Start Over

RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease

Authors :
Afonso, Marta B
Rodrigues, Pedro M
Mateus-Pinheiro, Miguel
Simão, André L
Gaspar, Maria M
Majdi, Amine
Arretxe, Enara
Alonso, Cristina
Santos-Laso, Alvaro
Jimenez-Agu¨ero, Raul
Eizaguirre, Emma
Bujanda, Luis
Pareja, Maria Jesus
Banales, Jesus M
Ratziu, Vlad
Gautheron, Jeremie
Castro, Rui E
Rodrigues, Cecília M P
Source :
Gut; 2021, Vol. 70 Issue: 12 p2359-2372, 14p
Publication Year :
2021

Abstract

ObjectiveReceptor-interacting protein kinase 3 (RIPK3) is a key player in necroptosis execution and an emerging metabolic regulator, whose contribution to non-alcoholic fatty liver disease (NAFLD) is controversial. We aimed to clarify the impact of RIPK3 signalling in the pathogenesis of human and experimental NAFLD.DesignRIPK3 levels were evaluated in two large independent cohorts of patients with biopsy proven NAFLD diagnosis and correlated with clinical and biochemical parameters. Wild-type (WT) or Ripk3-deficient (Ripk3−/−) mice were fed a choline-deficient L-amino acid-defined diet (CDAA) or an isocaloric control diet for 32 and 66 weeks.ResultsRIPK3 increased in patients with non-alcoholic steatohepatitis (NASH) in both cohorts, correlating with hepatic inflammation and fibrosis. Accordingly, Ripk3deficiency ameliorated CDAA-induced inflammation and fibrosis in mice at both 32 and 66 weeks. WT mice on the CDAA diet for 66 weeks developed preneoplastic nodules and displayed increased hepatocellular proliferation, which were reduced in Ripk3−/−mice. Furthermore, Ripk3 deficiency hampered tumourigenesis. Intriguingly, Ripk3−/−mice displayed increased body weight gain, while lipidomics showed that deletion of Ripk3shifted hepatic lipid profiles. Peroxisome proliferator-activated receptor γ (PPARγ) was increased in Ripk3−/−mice and negatively correlated with hepatic RIPK3 in patients with NAFLD. Mechanistic studies established a functional link between RIPK3 and PPARγ in controlling fat deposition and fibrosis.ConclusionHepatic RIPK3 correlates with NAFLD severity in humans and mice, playing a key role in managing liver metabolism, damage, inflammation, fibrosis and carcinogenesis. Targeting RIPK3 and its intricate signalling arises as a novel promising approach to treat NASH and arrest disease progression.

Details

Language :
English
ISSN :
00175749 and 14683288
Volume :
70
Issue :
12
Database :
Supplemental Index
Journal :
Gut
Publication Type :
Periodical
Accession number :
ejs58214434
Full Text :
https://doi.org/10.1136/gutjnl-2020-321767