Back to Search Start Over

Unveiling the Elusive Role of Tetraethyl Orthosilicate Hydrolysis in Ionic-Liquid-Templated Zeolite Synthesis

Authors :
Li, Xuemin
Li, Tsai-Ho
Zhou, Wenchong
Li, Yi-Pei
Sit, Patrick H.-L.
Wu, Zhijie
Curnow, Owen J.
Wu, Kevin C.-W.
Choi, Jungkyu
Yip, Alex C.K.
Source :
Materials Today Chemistry; 20210101, Issue: Preprints
Publication Year :
2021

Abstract

Despite previous reports showing that crystallization kinetics affects zeolite phase selectivity because zeolites are metastable species in their synthesis solution rather than thermodynamic end-points, the critical kinetics-controlling parameter is yet to be determined. This work elucidated the effect of tetraethyl orthosilicate (TEOS) hydrolysis before hydrothermal treatment on the final zeolite phase selectivity in the ionic liquid-templated synthesis of 10-membered ring zeolites (MFI- or TON-type zeolites). The results showed that the dissolved silica concentration in the synthesis solution, which is controlled by varying the TEOS hydrolysis temperature and addition rate, induced heterogeneous nuclear growth. Specifically, in 1- butyl-3-methylimidazolium ([BMIM]Br)-directed syntheses, the high and low concentrations of dissolved silica species led to MFI and TON zeolite formation, respectively. The experimental results are supported by silica polymerization modeling using the Reaction Ensemble Monte Carlo (REMC) method and theoretical calculations on composite building unit formation. The results are valuable for understanding the nucleation mechanism in zeolite crystallization.

Details

Language :
English
ISSN :
24685194
Issue :
Preprints
Database :
Supplemental Index
Journal :
Materials Today Chemistry
Publication Type :
Periodical
Accession number :
ejs58187113
Full Text :
https://doi.org/10.1016/j.mtchem.2021.100658