Back to Search
Start Over
Energy transport in axisymmetric flow on a rotating cylinder with heat source/sink and chemical reaction
- Source :
- Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering; 20210101, Issue: Preprints
- Publication Year :
- 2021
-
Abstract
- In this article, a thermal analysis is conducted for the axisymmetric flow of viscous nanofluid induced by torsional motion of cylinder. Here the rotation of the cylinder is axially dependent. The impression of heat source/sink with chemical reaction is perceived on the thermal and concentration boundary layer, while the consequence of magnetic field is observed on the fluid flow. In addition, we utilized a two-phased model for nanofluids, namely Buongiorno's model to compute the outcomes of the Soret effect and Brownian diffusion. The non-dimensional ordinary differential equations (ODEs) are obtained by employing the similarity transformation into governing partial differential equations (PDEs). We employed a built-in function, viz. bvp5c, a finite difference method in Matlab®, to solve the BVPs. The acquired results showed that the axial component of the velocity field occurred as a wall jet phenomenon, which is due to an axial pressure gradient. The axial flow and energy of the system are lessened; however, the peak of the wall jet is amplified for higher values of Reynolds number, but the converse trend is observed in the case of the magnetic parameter. The influence of pertinent parameters is also scrutinized for the wall-shear stress, local Nusselt, and Sherwood number for a selected range of Reynolds number, i.e., 0.01≤Re≤104.Furthermore, the consequences of the magnetic field have been succinctly observed on the flow, temperature, and concentration profiles. It is concluded that the magnetic field creates a resisting force that causes a reduction in the velocity fields, while temperature profile is enhanced because of the thermal conductivity of nanofluid. The impression of heat source/sink elevated the energy of system, whereas chemical reaction reduced the concentration field.
Details
- Language :
- English
- ISSN :
- 09544089 and 20413009
- Issue :
- Preprints
- Database :
- Supplemental Index
- Journal :
- Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
- Publication Type :
- Periodical
- Accession number :
- ejs58179229
- Full Text :
- https://doi.org/10.1177/09544089211050145