Back to Search Start Over

Electronic Structure of RhO2+, Its Ammoniated Complexes (NH3)1–5RhO2+, and Mechanistic Exploration of CH4Activation by Them

Authors :
Khan, Shahriar N.
Miliordos, Evangelos
Source :
Inorganic Chemistry; November 2021, Vol. 60 Issue: 21 p16111-16119, 9p
Publication Year :
2021

Abstract

High-level electronic structure calculations are initially performed to investigate the electronic structure of RhO2+. The construction of potential energy curves for the ground and low-lying excited states allowed the calculation of spectroscopic constants, including harmonic and anharmonic vibrational frequencies, bond lengths, spin–orbit constants, and excitation energies. The equilibrium electronic configurations were used for the interpretation of the chemical bonding. We further monitored how the Rh–O bonding scheme changes with the gradual addition of ammonia ligands. The nature of this bond remains unaffected up to four ammonia ligands but adopts a different electronic configuration in the pseudo-octahedral geometry of (NH3)5RhO2+. This has consequences in the activation mechanism of the C–H bond of methane by these complexes, especially (NH3)4RhO2+. We show that the [2 + 2] mechanism in the (NH3)4RhO2+case has a very low energy barrier comparable to that of a radical mechanism. We also demonstrate that methane can coordinate to the metal in a similar fashion to ammonia and that knowledge of the electronic structure of the pure ammonia complexes provides qualitative insights into the optimal reaction mechanism.

Details

Language :
English
ISSN :
00201669 and 1520510X
Volume :
60
Issue :
21
Database :
Supplemental Index
Journal :
Inorganic Chemistry
Publication Type :
Periodical
Accession number :
ejs58033929
Full Text :
https://doi.org/10.1021/acs.inorgchem.1c01447