Back to Search Start Over

Comparative cellular analysis of motor cortex in human, marmoset and mouse

Authors :
Bakken, Trygve E.
Jorstad, Nikolas L.
Hu, Qiwen
Lake, Blue B.
Tian, Wei
Kalmbach, Brian E.
Crow, Megan
Hodge, Rebecca D.
Krienen, Fenna M.
Sorensen, Staci A.
Eggermont, Jeroen
Yao, Zizhen
Aevermann, Brian D.
Aldridge, Andrew I.
Bartlett, Anna
Bertagnolli, Darren
Casper, Tamara
Castanon, Rosa G.
Crichton, Kirsten
Daigle, Tanya L.
Dalley, Rachel
Dee, Nick
Dembrow, Nikolai
Diep, Dinh
Ding, Song-Lin
Dong, Weixiu
Fang, Rongxin
Fischer, Stephan
Goldman, Melissa
Goldy, Jeff
Graybuck, Lucas T.
Herb, Brian R.
Hou, Xiaomeng
Kancherla, Jayaram
Kroll, Matthew
Lathia, Kanan
van Lew, Baldur
Li, Yang Eric
Liu, Christine S.
Liu, Hanqing
Lucero, Jacinta D.
Mahurkar, Anup
McMillen, Delissa
Miller, Jeremy A.
Moussa, Marmar
Nery, Joseph R.
Nicovich, Philip R.
Niu, Sheng-Yong
Orvis, Joshua
Osteen, Julia K.
Owen, Scott
Palmer, Carter R.
Pham, Thanh
Plongthongkum, Nongluk
Poirion, Olivier
Reed, Nora M.
Rimorin, Christine
Rivkin, Angeline
Romanow, William J.
Sedeño-Cortés, Adriana E.
Siletti, Kimberly
Somasundaram, Saroja
Sulc, Josef
Tieu, Michael
Torkelson, Amy
Tung, Herman
Wang, Xinxin
Xie, Fangming
Yanny, Anna Marie
Zhang, Renee
Ament, Seth A.
Behrens, M. Margarita
Bravo, Hector Corrada
Chun, Jerold
Dobin, Alexander
Gillis, Jesse
Hertzano, Ronna
Hof, Patrick R.
Höllt, Thomas
Horwitz, Gregory D.
Keene, C. Dirk
Kharchenko, Peter V.
Ko, Andrew L.
Lelieveldt, Boudewijn P.
Luo, Chongyuan
Mukamel, Eran A.
Pinto-Duarte, António
Preissl, Sebastian
Regev, Aviv
Ren, Bing
Scheuermann, Richard H.
Smith, Kimberly
Spain, William J.
White, Owen R.
Koch, Christof
Hawrylycz, Michael
Tasic, Bosiljka
Macosko, Evan Z.
McCarroll, Steven A.
Ting, Jonathan T.
Zeng, Hongkui
Zhang, Kun
Feng, Guoping
Ecker, Joseph R.
Linnarsson, Sten
Lein, Ed S.
Source :
Nature; October 2021, Vol. 598 Issue: 7879 p111-119, 9p
Publication Year :
2021

Abstract

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.

Details

Language :
English
ISSN :
00280836 and 14764687
Volume :
598
Issue :
7879
Database :
Supplemental Index
Journal :
Nature
Publication Type :
Periodical
Accession number :
ejs57991830
Full Text :
https://doi.org/10.1038/s41586-021-03465-8