Back to Search Start Over

Influence of microflow on hepatic sinusoid blood flow and red blood cell deformation

Authors :
Wang, Tianhao
Lü, Shouqin
Hao, Yinjing
Su, Zinan
Long, Mian
Cui, Yuhong
Source :
Biophysical Journal; 20210101, Issue: Preprints
Publication Year :
2021

Abstract

Hepatic sinusoids present complex anatomical structures such as the endothelial sieve pores and the Disse space, which govern the microscopic blood flow in the sinusoids and are associated with structural variations in liver fibrosis and cirrhosis. However, the contributions of the permeability of endothelial and collagen layers and the roughness of hepatocyte microvilli to the features of this microflow remain largely unknown. Here, an immersed boundary method coupled with a lattice Boltzmann method was adopted in an in vitrohepatic sinusoidal model, and flow field and erythrocyte deformation analyses were conducted by introducing three new source terms including permeability of the endothelial layer, resistance of hepatocyte microvilli and collagen layers, and deformation of red blood cells (RBCs). Numerical calculations indicated that alterations in endothelial permeability could significantly affect the flow velocity and flow rate distributions in hepatic sinusoids. Interestingly, a biphasic regulating pattern of shear stress occurred simultaneously on the surface of hepatocytes and the lower side of endothelium, i.e., the shear stress increased with increased thickness of hepatocyte microvilli and collagen layer when the endothelial permeability was high, but decreased with the increase of the thickness at low endothelial permeability. Additionally, this specified microflow manipulates typical RBC deformation inside the sinusoid, yielding one-third of the variation of deformable index with varied endothelial permeability. These simulations are not only consistent with experimental measurements using in vitroliver sinusoidal chip, but also elaborate the contributions of endothelial and collagen layer permeability and wall roughness. Thus, our results provide a basis for further characterizing this microflow and understanding its effects on cellular migration and deformation in the hepatic sinusoids.

Details

Language :
English
ISSN :
00063495 and 15420086
Issue :
Preprints
Database :
Supplemental Index
Journal :
Biophysical Journal
Publication Type :
Periodical
Accession number :
ejs57829741
Full Text :
https://doi.org/10.1016/j.bpj.2021.09.020