Back to Search Start Over

High Energy Density Shape Memory Polymers Using Strain-Induced Supramolecular Nanostructures

Authors :
Cooper, Christopher B.
Nikzad, Shayla
Yan, Hongping
Ochiai, Yuto
Lai, Jian-Cheng
Yu, Zhiao
Chen, Gan
Kang, Jiheong
Bao, Zhenan
Source :
ACS Central Science; October 2021, Vol. 7 Issue: 10 p1657-1667, 11p
Publication Year :
2021

Abstract

Shape memory polymers are promising materials in many emerging applications due to their large extensibility and excellent shape recovery. However, practical application of these polymers is limited by their poor energy densities (up to ∼1 MJ/m3). Here, we report an approach to achieve a high energy density, one-way shape memory polymer based on the formation of strain-induced supramolecular nanostructures. As polymer chains align during strain, strong directional dynamic bonds form, creating stable supramolecular nanostructures and trapping stretched chains in a highly elongated state. Upon heating, the dynamic bonds break, and stretched chains contract to their initial disordered state. This mechanism stores large amounts of entropic energy (as high as 19.6 MJ/m3or 17.9 J/g), almost six times higher than the best previously reported shape memory polymers while maintaining near 100% shape recovery and fixity. The reported phenomenon of strain-induced supramolecular structures offers a new approach toward achieving high energy density shape memory polymers.

Details

Language :
English
ISSN :
23747943 and 23747951
Volume :
7
Issue :
10
Database :
Supplemental Index
Journal :
ACS Central Science
Publication Type :
Periodical
Accession number :
ejs57694696
Full Text :
https://doi.org/10.1021/acscentsci.1c00829