Back to Search Start Over

Mechanism of apical K+ channel modulation in principal renal tubule cells. Effect of inhibition of basolateral Na(+)-K(+)-ATPase.

Authors :
Wang, W H
Geibel, J
Giebisch, G
Source :
The Journal of General Physiology; May 1993, Vol. 101 Issue: 5 p673-694, 22p
Publication Year :
1993

Abstract

The effects of inhibition of the basolateral Na(+)-K(+)-ATPase (pump) on the apical low-conductance K+ channel of principal cells in rat cortical collecting duct (CCD) were studied with patch-clamp techniques. Inhibition of pump activity by removal of K+ from the bath solution or addition of strophanthidin reversibly reduced K+ channel activity in cell-attached patches to 36% of the control value. The effect of pump inhibition on K+ channel activity was dependent on the presence of extracellular Ca2+, since removal of Ca2+ in the bath solution abolished the inhibitory effect of 0 mM K+ bath. The intracellular [Ca2+] (measured with fura-2) was significantly increased, from 125 nM (control) to 335 nM (0 mM K+ bath) or 408 nM (0.2 mM strophanthidin), during inhibition of pump activity. In contrast, cell pH decreased only moderately, from 7.45 to 7.35. Raising intracellular Ca2+ by addition of 2 microM ionomycin mimicked the effect of pump inhibition on K+ channel activity. 0.1 mM amiloride also significantly reduced the inhibitory effect of the K+ removal. Because the apical low-conductance K channel in inside-out patches is not sensitive to Ca2+ (Wang, W., A. Schwab, and G. Giebisch, 1990. American Journal of Physiology. 259:F494-F502), it is suggested that the inhibitory effect of Ca2+ is mediated by a Ca(2+)-dependent signal transduction pathway. This view was supported in experiments in which application of 200 nM staurosporine, a potent inhibitor of Ca(2+)-dependent protein kinase C (PKC), markedly diminished the effect of the pump inhibition on channel activity. We conclude that a Ca(2+)-dependent protein kinase such as PKC plays a key role in the downregulation of apical low-conductance K+ channel activity during inhibition of the basolateral Na(+)-K(+)-ATPase.

Details

Language :
English
ISSN :
00221295 and 15407748
Volume :
101
Issue :
5
Database :
Supplemental Index
Journal :
The Journal of General Physiology
Publication Type :
Periodical
Accession number :
ejs57376372
Full Text :
https://doi.org/10.1085/jgp.101.5.673