Back to Search Start Over

Dual-targeted and MRI-guided photothermal therapy viairon-based nanoparticles-incorporated neutrophilsElectronic supplementary information (ESI) available: Stability, encapsulation efficiency of ICG, data for photothermal conversion efficiency, and others. See DOI: 10.1039/d1bm00127b

Authors :
Wang, Jing
Mei, Tianxiao
Liu, Yang
Zhang, Yifan
Zhang, Ziliang
Hu, Yihui
Wang, Yibin
Wu, Minliang
Yang, Chuanxue
Zhong, Xiangdong
Chen, Bingdi
Cui, Zheng
Le, Wenjun
Liu, Zhongmin
Source :
Biomaterials Science; 2021, Vol. 9 Issue: 11 p3968-3978, 11p
Publication Year :
2021

Abstract

Nanoparticle-mediated photothermal therapy (PTT) has shown promising capability for tumor therapy through the high local temperature at the tumor site generated by a photothermal agent (PTA) under visible or near-infrared (NIR) irradiation. Improving the accumulation of PTA at the tumor site is crucial to achieving effective photothermal treatment. Here, we developed temperature-activatable engineered neutrophils (Ne) by combining indocyanine green (ICG)-loaded magnetic silica NIR-sensitive nanoparticles (NSNP), which provide the potential for dual-targeted photothermal therapy. The combined effect of neutrophil targeting and magnetic targeting increased the accumulation of PTA at the tumor site. According to magnetic resonance imaging (MRI), the retention of intravenous injected NSNP-incorporated neutrophils within the tumor site was markedly augmented as compared to free NSNP. Furthermore, when irradiated by NIR, NSNP could cause a high local temperature at the tumor site and the thermal stimulation of neutrophils. The heat can kill tumor cells directly, and also lead to the death of neutrophils, upon which active substances with tumor-killing efficacy will be released to kill residual tumor cells and thus reduce tumor recurrence. Thereby, our therapy achieved the elimination of malignancy in the mouse model of the pancreatic tumor without recurrence. Given that all materials used in this system have been approved for use in humans, the transition of this treatment method to clinical application is plausible.

Details

Language :
English
ISSN :
20474830 and 20474849
Volume :
9
Issue :
11
Database :
Supplemental Index
Journal :
Biomaterials Science
Publication Type :
Periodical
Accession number :
ejs56582185
Full Text :
https://doi.org/10.1039/d1bm00127b