Back to Search Start Over

Secretion of somatostatin by Saccharomyces cerevisiae. Correct proteolytic processing of pro-alpha-factor-somatostatin hybrids requires the products of the KEX2 and STE13 genes.

Authors :
Bourbonnais, Y
Bolin, D
Shields, D
Source :
Journal of Biological Chemistry; October 1988, Vol. 263 Issue: 30 p15342-15347, 6p
Publication Year :
1988

Abstract

Somatostatin is a 14-amino-acid peptide hormone that is proteolytically excised from its precursor, prosomatostatin, by the action of a paired-basic-specific protease. Yeast (Saccharomyces cerevisiae Mat alpha) synthesizes an analogous peptide hormone precursor, pro-alpha-factor, which is proteolytically processed by at least two separate proteases, the products of the KEX2 and STE13 genes, to generate the mature bioactive peptide. Expression in yeast of recombinant DNAs encoding hybrids between the proregion of alpha-factor and somatostatin results in proteolytic processing of the chimeric precursors and secretion of mature somatostatin. To determine if the chimeras were processed by the same enzymes that cleave endogenous pro-alpha-factor, the hybrid DNAs were introduced into kex2 and ste13 mutants, and the secreted proteins were analyzed. Expression of the pro-alpha-factor-somatostatin hybrids in kex2 mutant yeast resulted in secretion of a high molecular weight hyperglycosylated precursor. No mature somatostatin was secreted, and there was no proteolytic cleavage at the Lys-Arg processing site. Similarly, in ste13 yeast, only somatostatin molecules containing the (Glu-Ala)3 spacer peptide at the amino terminus were secreted. Our results demonstrate that in yeast processing mutants, the behavior of the chimeric precursors with respect to proteolytic processing was exactly as that of endogenous pro-alpha-factor. We conclude that the same enzymes that generate mature alpha-factor proteolytically process hybrid precursors. This suggests that structural domains of the proregion rather than the mature peptide are recognized by the processing proteases.

Details

Language :
English
ISSN :
00219258 and 1083351X
Volume :
263
Issue :
30
Database :
Supplemental Index
Journal :
Journal of Biological Chemistry
Publication Type :
Periodical
Accession number :
ejs55973374
Full Text :
https://doi.org/10.1016/S0021-9258(19)37594-5