Back to Search Start Over

Prediction modelling of inpatient neonatal mortality in high-mortality settings

Authors :
Aluvaala, Jalemba
Collins, Gary
Maina, Beth
Mutinda, Catherine
Waiyego, Mary
Berkley, James Alexander
English, Mike
Source :
Archives of Disease in Childhood; 2021, Vol. 106 Issue: 5 p449-454, 6p
Publication Year :
2021

Abstract

ObjectivePrognostic models aid clinical decision making and evaluation of hospital performance. Existing neonatal prognostic models typically use physiological measures that are often not available, such as pulse oximetry values, in routine practice in low-resource settings. We aimed to develop and validate two novel models to predict all cause in-hospital mortality following neonatal unit admission in a low-resource, high-mortality setting.Study design and settingWe used basic, routine clinical data recorded by duty clinicians at the time of admission to derive (n=5427) and validate (n=1627) two novel models to predict in-hospital mortality. The Neonatal Essential Treatment Score (NETS) included treatments prescribed at the time of admission while the Score for Essential Neonatal Symptoms and Signs (SENSS) used basic clinical signs. Logistic regression was used, and performance was evaluated using discrimination and calibration.ResultsAt derivation, c-statistic (discrimination) for NETS was 0.92 (95% CI 0.90 to 0.93) and that for SENSS was 0.91 (95% CI 0.89 to 0.93). At external (temporal) validation, NETS had a c-statistic of 0.89 (95% CI 0.86 to 0.92) and SENSS 0.89 (95% CI 0.84 to 0.93). The calibration intercept for NETS was −0.72 (95% CI −0.96 to −0.49) and that for SENSS was −0.33 (95% CI −0.56 to −0.11).ConclusionUsing routine neonatal data in a low-resource setting, we found that it is possible to predict in-hospital mortality using either treatments or signs and symptoms. Further validation of these models may support their use in treatment decisions and for case-mix adjustment to help understand performance variation across hospitals.

Details

Language :
English
ISSN :
00039888 and 14682044
Volume :
106
Issue :
5
Database :
Supplemental Index
Journal :
Archives of Disease in Childhood
Publication Type :
Periodical
Accession number :
ejs55928122
Full Text :
https://doi.org/10.1136/archdischild-2020-319217