Back to Search
Start Over
Mechanism-based inhibition of dopamine beta-monooxygenase by aldehydes and amides.
- Source :
- Journal of Biological Chemistry; December 1986, Vol. 261 Issue: 35 p16421-16427, 7p
- Publication Year :
- 1986
-
Abstract
- A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which enzyme-bound alpha-aminoacetophenone is generated, followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the enzyme inhibitory species (Mangold, J. B., and Klinman, J. P. (1984) J. Biol. Chem. 259, 7772-7779). If correct, additional compounds capable of producing enzyme-bound (formula; see text) reductant should inhibit dopamine beta-monooxygenase. Phenylacetaldehyde was chosen to test this model, since beta-hydroxyphenylacetaldehyde is expected to function as a reductant in a manner analogous to alpha-aminoacetophenone. Phenylacetaldehyde exhibits the properties of a mechanism-based inhibitor. Kinetic parameters are comparable to beta-chlorophenethylamine under both initial velocity and inactivation conditions. Since phenylacetaldehyde bears little resemblance to beta-chlorophenethylamine, its analogous inhibitory action provides support for an intramolecular redox reaction (via beta-hydroxyphenylacetaldehyde oxidation to a radical cation) in dopamine beta-monooxygenase inactivation. beta-Hydroxyphenylacetaldehyde was identified as the enzymatic product of phenylacetaldehyde turnover. As predicted, this product behaves both as a time-dependent inhibitor of dopamine beta-monooxygenase and as an electron donor in enzyme-catalyzed hydroxylation of tyramine to octopamine. Phenylacetamide and p-hydroxyphenylacetamide are also found to be mechanism-based inhibitors of dopamine beta-monooxygenase. In this case the product of hydroxylation (beta-hydroxyphenylacetamide) is redox inactive and, therefore, is unable to function as either a reductant or an inhibitor. Thus, mechanism-based inhibitors are divided into two types: type I, which undergoes hydroxylation prior to inactivation, and type II, which only requires hydrogen atom abstraction. A general mechanism for dopamine beta-monooxygenase inactivation is described, in which a common mechanistic radical intermediate is formed from both pathways.
Details
- Language :
- English
- ISSN :
- 00219258 and 1083351X
- Volume :
- 261
- Issue :
- 35
- Database :
- Supplemental Index
- Journal :
- Journal of Biological Chemistry
- Publication Type :
- Periodical
- Accession number :
- ejs55887394
- Full Text :
- https://doi.org/10.1016/S0021-9258(18)66583-4