Back to Search Start Over

Control of endothelial quiescence by FOXO-regulated metabolites

Authors :
Andrade, Jorge
Shi, Chenyue
Costa, Ana S. H.
Choi, Jeongwoon
Kim, Jaeryung
Doddaballapur, Anuradha
Sugino, Toshiya
Ong, Yu Ting
Castro, Marco
Zimmermann, Barbara
Kaulich, Manuel
Guenther, Stefan
Wilhelm, Kerstin
Kubota, Yoshiaki
Braun, Thomas
Koh, Gou Young
Grosso, Ana Rita
Frezza, Christian
Potente, Michael
Source :
Nature Cell Biology; April 2021, Vol. 23 Issue: 4 p413-423, 11p
Publication Year :
2021

Abstract

Endothelial cells (ECs) adapt their metabolism to enable the growth of new blood vessels, but little is known how ECs regulate metabolism to adopt a quiescent state. Here, we show that the metabolite S-2-hydroxyglutarate (S-2HG) plays a crucial role in the regulation of endothelial quiescence. We find that S-2HG is produced in ECs after activation of the transcription factor forkhead box O1 (FOXO1), where it limits cell cycle progression, metabolic activity and vascular expansion. FOXO1 stimulates S-2HG production by inhibiting the mitochondrial enzyme 2-oxoglutarate dehydrogenase. This inhibition relies on branched-chain amino acid catabolites such as 3-methyl-2-oxovalerate, which increase in ECs with activated FOXO1. Treatment of ECs with 3-methyl-2-oxovalerate elicits S-2HG production and suppresses proliferation, causing vascular rarefaction in mice. Our findings identify a metabolic programme that promotes the acquisition of a quiescent endothelial state and highlight the role of metabolites as signalling molecules in the endothelium.

Details

Language :
English
ISSN :
14657392 and 14764679
Volume :
23
Issue :
4
Database :
Supplemental Index
Journal :
Nature Cell Biology
Publication Type :
Periodical
Accession number :
ejs55734301
Full Text :
https://doi.org/10.1038/s41556-021-00637-6