Back to Search
Start Over
Analysis of differential substrate selectivities of CYP2B6 and CYP2E1 by site-directed mutagenesis and molecular modeling.
- Source :
- The Journal of Pharmacology and Experimental Therapeutics; January 2003, Vol. 304 Issue: 1 p477-87, 11p
- Publication Year :
- 2003
-
Abstract
- Human CYP2B6 and CYP2E1 were used to investigate the extent to which differential substrate selectivities between cytochrome P450 subfamilies reflect differences in active-site residues as opposed to distinct arrangement of the backbone of the enzymes. Reciprocal CYP2B6 and CYP2E1 mutants at active-site positions 103, 209, 294, 363, 367, and 477 (numbering according to CYP2B6) were characterized using the CYP2B6-selective substrate 7-ethoxy-4-trifluoromethylcoumarin, the CYP2E1-selective substrate p-nitrophenol, and the common substrates 7-ethoxycoumarin, 7-butoxycoumarin, and arachidonic acid. This report is the first to study the active site of CYP2E1 by systematic site-directed mutagenesis. One of the most intriguing findings was that substitution of CYP2E1 Phe-477 with valine from CYP2B6 resulted in significant 7-ethoxy-4-trifluoromethylcoumarin deethylation. Use of three-dimensional models of CYP2B6 and CYP2E1 based on the crystal structure of CYP2C5 suggested that deethylation of 7-ethoxy-4-trifluoromethylcoumarin by CYP2E1 is impeded by van der Waals overlaps with the side chain of Phe-477. Interestingly, none of the CYP2B6 mutants acquired enhanced ability to hydroxylate p-nitrophenol. Substitution of residue 363 in CYP2E1 and CYP2B6 resulted in significant alterations of the metabolite profile for the side chain hydroxylation of 7-butoxycoumarin. Probing of CYP2E1 mutants with arachidonic acid indicated that residues Leu-209 and Phe-477 are critical for substrate orientation in the active site. Overall, the study revealed that differences in the side chains of active-site residues are partially responsible for differential substrate selectivities across cytochrome P450 subfamilies. However, the relative importance of active-site residues appears to be dependent on the structural similarity of the compound to other substrates of the enzyme.
Details
- Language :
- English
- ISSN :
- 00223565 and 15210103
- Volume :
- 304
- Issue :
- 1
- Database :
- Supplemental Index
- Journal :
- The Journal of Pharmacology and Experimental Therapeutics
- Publication Type :
- Periodical
- Accession number :
- ejs5549868