Back to Search Start Over

Tuning the Intermolecular Electron Transfer of Low-Dimensional and Metal-Free BCN/C60Electrocatalysts via Interfacial Defects for Efficient Hydrogen and Oxygen Electrochemistry

Authors :
Ahsan, Md Ariful
He, Tianwei
Eid, Kamel
Abdullah, Aboubakr M.
Curry, Michael L.
Du, Aijun
Puente Santiago, Alain R.
Echegoyen, Luis
Noveron, Juan C.
Source :
Journal of the American Chemical Society; 20210101, Issue: Preprints
Publication Year :
2021

Abstract

The development of low-dimensional (LD) supramolecular materials with multifunctional electrocatalytic properties has sparked the attention of the catalysis community. Herein, we report the synthesis of a new class of 0D–2D heterostructures composed of boron carbon nitride nanosheets (BCN NSs) and fullerene molecules (C60/F) that exhibit multifunctional electrocatalytic properties for the hydrogen evolution/oxidation reactions (HER/HOR) and the oxygen evolution/reduction reactions (OER/ORR). The electrocatalytic properties were studied with varying F:BCN weight ratios to optimize the intermolecular electron transfer (ET) from the BCN NSs to the electron-accepting C60molecules. The nanohybrid supramolecular material with 10 wt % F in BCN NSs (10% F/BCN) exhibited the largest Raman and C 1s binding energy shifts, which were associated with greater cooperativity interactions and enhanced ET processes at the F/BCN interface. This synergistic interfacial phenomenon resulted in highly active catalytic sites that markedly boosted electrocatalytic activity of the material. The 10% F/BCN showed the highest tetrafunctional catalytic performance, outperforming the OER catalytic activity of commercial RuO2catalysts with a η10of 390 mV and very competitive onset potential values of −0.042 and 0.92 V vs RHE for HER and ORR, respectively, and a current density value of 1.47 mA cm–2at 0.1 V vs RHE with an ultralow ΔGH*value of −0.03 eV toward the HOR process. Additionally, the 10% F/BCN catalyst was also used as both cathode and anode in a water splitting device, delivering a cell potential of 1.61 V to reach a current density of 10 mA cm–2.

Details

Language :
English
ISSN :
00027863 and 15205126
Issue :
Preprints
Database :
Supplemental Index
Journal :
Journal of the American Chemical Society
Publication Type :
Periodical
Accession number :
ejs55017341
Full Text :
https://doi.org/10.1021/jacs.0c12386