Back to Search Start Over

Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy

Authors :
Schena, Francesco Paolo
Anelli, Vito Walter
Trotta, Joseph
Di Noia, Tommaso
Manno, Carlo
Tripepi, Giovanni
D’Arrigo, Graziella
Chesnaye, Nicholas C.
Russo, Maria Luisa
Stangou, Maria
Papagianni, Aikaterini
Zoccali, Carmine
Tesar, Vladimir
Coppo, Rosanna
Tesar, V.
Maixnerova, D.
Lundberg, S.
Gesualdo, L.
Emma, F.
Fuiano, L.
Beltrame, G.
Rollino, C.
Coppo, R.
Amore, A.
Camilla, R.
Peruzzi, L.
Praga, M.
Feriozzi, S.
Polci, R.
Segoloni, G.
Colla, L.
Pani, A.
Angioi, A.
Piras, L.
Feehally, J.
Cancarini, G.
Ravera, S.
Durlik, M.
Moggia, E.
Ballarin, J.
Di Giulio, S.
Pugliese, F.
Serriello, I.
Caliskan, Y.
Sever, M.
Kilicaslan, I.
Locatelli, F.
Del Vecchio, L.
Wetzels, J.F.M.
Peters, H.
Berg, U.
Carvalho, F.
da Costa Ferreira, A.C.
Maggio, M.
Wiecek, A.
Ots-Rosenberg, M.
Magistroni, R.
Topaloglu, R.
Bilginer, Y.
D’Amico, M.
Stangou, M.
Giacchino, F.
Goumenos, D.
Papasotiriou, M.
Galesic, K.
Toric, L.
Geddes, C.
Siamopoulos, K.
Balafa, O.
Galliani, M.
Stratta, P.
Quaglia, M.
Bergia, R.
Cravero, R.
Salvadori, M.
Cirami, L.
Fellstrom, B.
Smerud, H. Kloster
Ferrario, F.
Stellato, T.
Egido, J.
Martin, C.
Floege, J.
Eitner, F.
Rauen, T.
Lupo, A.
Bernich, P.
Menè, P.
Morosetti, M.
van Kooten, C.
Rabelink, T.
Reinders, M.E.J.
Grinyo, J.M. Boria
Cusinato, S.
Benozzi, L.
Savoldi, S.
Licata, C.
Mizerska-Wasiak, M.
Roszkowska-Blaim, M.
Martina, G.
Messuerotti, A.
Canton, A. Dal
Esposito, C.
Migotto, C.
Triolo, G.
Mariano, F.
Pozzi, C.
Boero, R.
Mazzucco
Giannakakis, C.
Honsova, E.
Sundelin, B.
Di Palma, A.M.
Ferrario, F.
Gutiérrez, E.
Asunis, A.M.
Barratt, J.
Tardanico, R.
Perkowska-Ptasinska, A.
Terroba, J. Arce
Fortunato, M.
Pantzaki, A.
Ozluk, Y.
Steenbergen, E.
Soderberg, M.
Riispere, Z.
Furci, L.
Orhan, D.
Kipgen, D.
Casartelli, D.
GalesicLjubanovic, D.
Gakiopoulou, H.
Bertoni, E.
Ortiz, P. Cannata
Karkoszka, H.
Groene, H.J.
Stoppacciaro, A.
Bajema, I.
Bruijn, J.
FulladosaOliveras, X.
Maldyk, J.
Ioachim, E.
Abbrescia, Daniela
Kouri, Nikoleta
Stangou, Maria
Papagianni, Aikaterini
Scolari, Francesco
Delbarba, Elisa
Bonomini, Mario
Piscitani, Luca
Stallone, Giovanni
Infante, Barbara
Godeas, Giulia
Madio, Desiree
Biancone, Luigi
Campagna, Marco
Zaza, Gianluigi
Squarzoni, Isabella
Cangemi, Concetta
Source :
Kidney International; May 2021, Vol. 99 Issue: 5 p1179-1188, 10p
Publication Year :
2021

Abstract

We have developed an artificial neural network prediction model for end-stage kidney disease (ESKD) in patients with primary immunoglobulin A nephropathy (IgAN) using a retrospective cohort of 948 patients with IgAN. Our tool is based on a two-step procedure of a classifier model that predicts ESKD, and a regression model that predicts development of ESKD over time. The classifier model showed a performance value of 0.82 (area under the receiver operating characteristic curve) in patients with a follow-up of five years, which improved to 0.89 at the ten-year follow-up. Both models had a higher recall rate, which indicated the practicality of the tool. The regression model showed a mean absolute error of 1.78 years and a root mean square error of 2.15 years. Testing in an independent cohort of 167patients with IgAN found successful results for 91% of the patients. Comparison of our system with other mathematical models showed the highest discriminant Harrell C index at five- and ten-years follow-up (81% and 86%, respectively), paralleling the lowest Akaike information criterion values (355.01 and 269.56, respectively). Moreover, our system was the best calibrated model indicating that the predicted and observed outcome probabilities did not significantly differ. Finally, the dynamic discrimination indexes of our artificial neural network, expressed as the weighted average of time-dependent areas under the curve calculated at one and two years, were 0.80 and 0.79, respectively. Similar results were observed over a 25-year follow-up period. Thus, our tool identified individuals who were at a high risk of developing ESKD due to IgAN and predicted the time-to-event endpoint. Accurate prediction is an important step toward introduction of a therapeutic strategy for improving clinical outcomes.

Details

Language :
English
ISSN :
00852538 and 15231755
Volume :
99
Issue :
5
Database :
Supplemental Index
Journal :
Kidney International
Publication Type :
Periodical
Accession number :
ejs54905506
Full Text :
https://doi.org/10.1016/j.kint.2020.07.046