Back to Search
Start Over
h-FIBER: Microfluidic Topographical Hollow Fiber for Studies of Glomerular Filtration Barrier
- Source :
- ACS Central Science; June 2020, Vol. 6 Issue: 6 p903-912, 10p
- Publication Year :
- 2020
-
Abstract
- Kidney-on-a-chip devices may revolutionize the discovery of new therapies. However, fabricating a 3D glomerulus remains a challenge, due to a requirement for a microscale soft material with complex topography to support cell culture in a native configuration. Here, we describe the use of microfluidic spinning to recapitulate complex concave and convex topographies over multiple length scales, required for biofabrication of a biomimetic 3D glomerulus. We produced a microfluidic extruded topographic hollow fiber (h-FIBER), consisting of a vessel-like perfusable tubular channel for endothelial cell cultivation, and a glomerulus-like knot with microconvex topography on its surface for podocyte cultivation. Meter long h-FIBERs were produced in microfluidics within minutes, followed by chemically induced inflation for generation of topographical cues on the 3D scaffold surface. The h-FIBERs were assembled into a hot-embossed plastic 96-well plate. Long-term perfusion, podocyte barrier formation, endothelialization, and permeability tests were easily performed by a standard pipetting technique on the platform. Following long-term culture (1 month), a functional filtration barrier, measured by the transfer of albumin from the blood vessel side to the ultrafiltrate side, suggested the establishment of an engineered glomerulus.
Details
- Language :
- English
- ISSN :
- 23747943 and 23747951
- Volume :
- 6
- Issue :
- 6
- Database :
- Supplemental Index
- Journal :
- ACS Central Science
- Publication Type :
- Periodical
- Accession number :
- ejs53235229
- Full Text :
- https://doi.org/10.1021/acscentsci.9b01097