Back to Search Start Over

h-FIBER: Microfluidic Topographical Hollow Fiber for Studies of Glomerular Filtration Barrier

Authors :
Xie, Ruoxiao
Korolj, Anastasia
Liu, Chuan
Song, Xin
Lu, Rick Xing Ze
Zhang, Boyang
Ramachandran, Arun
Liang, Qionglin
Radisic, Milica
Source :
ACS Central Science; June 2020, Vol. 6 Issue: 6 p903-912, 10p
Publication Year :
2020

Abstract

Kidney-on-a-chip devices may revolutionize the discovery of new therapies. However, fabricating a 3D glomerulus remains a challenge, due to a requirement for a microscale soft material with complex topography to support cell culture in a native configuration. Here, we describe the use of microfluidic spinning to recapitulate complex concave and convex topographies over multiple length scales, required for biofabrication of a biomimetic 3D glomerulus. We produced a microfluidic extruded topographic hollow fiber (h-FIBER), consisting of a vessel-like perfusable tubular channel for endothelial cell cultivation, and a glomerulus-like knot with microconvex topography on its surface for podocyte cultivation. Meter long h-FIBERs were produced in microfluidics within minutes, followed by chemically induced inflation for generation of topographical cues on the 3D scaffold surface. The h-FIBERs were assembled into a hot-embossed plastic 96-well plate. Long-term perfusion, podocyte barrier formation, endothelialization, and permeability tests were easily performed by a standard pipetting technique on the platform. Following long-term culture (1 month), a functional filtration barrier, measured by the transfer of albumin from the blood vessel side to the ultrafiltrate side, suggested the establishment of an engineered glomerulus.

Details

Language :
English
ISSN :
23747943 and 23747951
Volume :
6
Issue :
6
Database :
Supplemental Index
Journal :
ACS Central Science
Publication Type :
Periodical
Accession number :
ejs53235229
Full Text :
https://doi.org/10.1021/acscentsci.9b01097