Back to Search
Start Over
A Heterojunction Structured WO2.9-WSe2Nanoradiosensitizer Increases Local Tumor Ablation and Checkpoint Blockade Immunotherapy upon Low Radiation Dose
- Source :
- ACS Nano; May 2020, Vol. 14 Issue: 5 p5400-5416, 17p
- Publication Year :
- 2020
-
Abstract
- Radiotherapy (RT) in practical use often suffers from off-target side effects and ineffectiveness against hypoxic tumor microenvironment (TME) as well as remote metastases. With regard to these problems, herein, we provide semiconductor heterojunction structured WO2.9-WSe2-PEG nanoparticles to realize a synergistic RT/photothermal therapy (PTT)/checkpoint blockade immunotherapy (CBT) for enhanced antitumor and antimetastatic effect. Based on the heterojunction structured nanoparticle with high Z element, the nanosystem could realize non-oxygen-dependent reactive oxygen species generation by catalyzing highly expressed H2O2in TME upon X-ray irradiation, which could further induce immunogenic cell death. Meanwhile, this nanosystem could also induce hyperthermia upon near-infrared irradiation to enhance RT outcome. With the addition of anti-PD-L1 antibody-based CBT, our results give potent evidence that local RT/PTT upon mild temperature and low radiation dose could efficiently ablate local tumors and inhibit tumor metastasis as well as prevent tumor rechallenge. Our study provides not only one kind of radiosensitizer based on semiconductor nanoparticles but also a versatile nanoplatform for simultaneous triple-combined therapy (RT/PTT/CBT) for treating both local and metastasis tumors.
Details
- Language :
- English
- ISSN :
- 19360851 and 1936086X
- Volume :
- 14
- Issue :
- 5
- Database :
- Supplemental Index
- Journal :
- ACS Nano
- Publication Type :
- Periodical
- Accession number :
- ejs53058194
- Full Text :
- https://doi.org/10.1021/acsnano.9b08962