Back to Search Start Over

Nightside condensation of iron in an ultrahot giant exoplanet

Authors :
Ehrenreich, David
Lovis, Christophe
Allart, Romain
Zapatero Osorio, María Rosa
Pepe, Francesco
Cristiani, Stefano
Rebolo, Rafael
Santos, Nuno C.
Borsa, Francesco
Demangeon, Olivier
Dumusque, Xavier
González Hernández, Jonay I.
Casasayas-Barris, Núria
Ségransan, Damien
Sousa, Sérgio
Abreu, Manuel
Adibekyan, Vardan
Affolter, Michael
Allende Prieto, Carlos
Alibert, Yann
Aliverti, Matteo
Alves, David
Amate, Manuel
Avila, Gerardo
Baldini, Veronica
Bandy, Timothy
Benz, Willy
Bianco, Andrea
Bolmont, Émeline
Bouchy, François
Bourrier, Vincent
Broeg, Christopher
Cabral, Alexandre
Calderone, Giorgio
Pallé, Enric
Cegla, H. M.
Cirami, Roberto
Coelho, João M. P.
Conconi, Paolo
Coretti, Igor
Cumani, Claudio
Cupani, Guido
Dekker, Hans
Delabre, Bernard
Deiries, Sebastian
D’Odorico, Valentina
Di Marcantonio, Paolo
Figueira, Pedro
Fragoso, Ana
Genolet, Ludovic
Genoni, Matteo
Génova Santos, Ricardo
Hara, Nathan
Hughes, Ian
Iwert, Olaf
Kerber, Florian
Knudstrup, Jens
Landoni, Marco
Lavie, Baptiste
Lizon, Jean-Louis
Lendl, Monika
Lo Curto, Gaspare
Maire, Charles
Manescau, Antonio
Martins, C. J. A. P.
Mégevand, Denis
Mehner, Andrea
Micela, Giusi
Modigliani, Andrea
Molaro, Paolo
Monteiro, Manuel
Monteiro, Mario
Moschetti, Manuele
Müller, Eric
Nunes, Nelson
Oggioni, Luca
Oliveira, António
Pariani, Giorgio
Pasquini, Luca
Poretti, Ennio
Rasilla, José Luis
Redaelli, Edoardo
Riva, Marco
Santana Tschudi, Samuel
Santin, Paolo
Santos, Pedro
Segovia Milla, Alex
Seidel, Julia V.
Sosnowska, Danuta
Sozzetti, Alessandro
Spanò, Paolo
Suárez Mascareño, Alejandro
Tabernero, Hugo
Tenegi, Fabio
Udry, Stéphane
Zanutta, Alessio
Zerbi, Filippo
Source :
Nature; April 2020, Vol. 580 Issue: 7805 p597-601, 5p
Publication Year :
2020

Abstract

Ultrahot giant exoplanets receive thousands of times Earth’s insolation1,2. Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry3–5. Daysides are predicted to be cloud-free, dominated by atomic species6and much hotter than nightsides5,7,8. Atoms are expected to recombine into molecules over the nightside9, resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed10–14, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night (‘evening’) and night-to-day (‘morning’) terminators could, however, be revealed as an asymmetric absorption signature during transit4,7,15. Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by −11 ± 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside16. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.

Details

Language :
English
ISSN :
00280836 and 14764687
Volume :
580
Issue :
7805
Database :
Supplemental Index
Journal :
Nature
Publication Type :
Periodical
Accession number :
ejs52927813
Full Text :
https://doi.org/10.1038/s41586-020-2107-1