Back to Search Start Over

Cation Engineering in Two-Dimensional Ruddlesden–Popper Lead Iodide Perovskites with Mixed Large A-Site Cations in the Cages

Authors :
Fu, Yongping
Jiang, Xinyi
Li, Xiaotong
Traore, Boubacar
Spanopoulos, Ioannis
Katan, Claudine
Even, Jacky
Kanatzidis, Mercouri G.
Harel, Elad
Source :
Journal of the American Chemical Society; February 2020, Vol. 142 Issue: 8 p4008-4021, 14p
Publication Year :
2020

Abstract

The Goldschmidt tolerance factor in halide perovskites limits the number of cations that can enter their cages without destabilizing their overall structure. Here, we have explored the limits of this geometric factor and found that the ethylammonium (EA) cations which lie outside the tolerance factor range can still enter the cages of the 2D halide perovskites by stretching them. The new perovskites allow us to study how these large cations occupying the perovskite cages affect the structural, optical, and electronic properties. We report a series of cation engineered 2D Ruddlesden–Popper lead iodide perovskites (BA)2(EAxMA1–x)2Pb3I10(x= 0–1, BA is n-butylammonium, MA is methylammonium) by the incorporation of a large EA cation in the cage. An analysis of the single-crystal structures reveals that the incorporation of EA in the cage significantly stretches Pb–I bonds, expands the cage, and induces a larger octahedral distortion in the inorganic framework. Spectroscopic and theoretical studies show that such structural deformation leads to a blue-shifted bandgap, sub-bandgap trap states with wider energetic distribution, and stronger photoluminescence quenching. These results enrich the family of 2D perovskites and provide new insights for understanding the structure–property relationship in perovskite materials.

Details

Language :
English
ISSN :
00027863 and 15205126
Volume :
142
Issue :
8
Database :
Supplemental Index
Journal :
Journal of the American Chemical Society
Publication Type :
Periodical
Accession number :
ejs52360972
Full Text :
https://doi.org/10.1021/jacs.9b13587