Back to Search
Start Over
Isotopically Directed Symmetry Breaking and Enantioenrichment in Attrition-Enhanced Deracemization
- Source :
- Journal of the American Chemical Society; February 2020, Vol. 142 Issue: 8 p3873-3879, 7p
- Publication Year :
- 2020
-
Abstract
- The evolution of homochirality via attrition-enhanced deracemization (AED) of enantiomorphic solids is carried out using molecules that differ only in the isotopic composition of a phenyl group positioned remote from the chiral center. Enantioenrichment consistently favors the enantiomorph containing a deuterated phenyl group over the protio or 13C version, and the protio version is consistently favored over the 13C version. While these isotopic compounds exhibit identical crystal structures and solubilities, the trend in deracemization correlates with melting points. Understanding the origin of this isotope bias provides fundamental clues about overcoming stochastic behavior to direct the stereochemical outcome in attrition-enhanced deracemization processes. The energy required for breaking symmetry with chiral bias is compared for this near-equilibrium AED process and the far-from-equilibrium Soai autocatalytic reaction. Implications for the origin of biological homochirality are discussed.
Details
- Language :
- English
- ISSN :
- 00027863 and 15205126
- Volume :
- 142
- Issue :
- 8
- Database :
- Supplemental Index
- Journal :
- Journal of the American Chemical Society
- Publication Type :
- Periodical
- Accession number :
- ejs52347709
- Full Text :
- https://doi.org/10.1021/jacs.9b11422