Back to Search
Start Over
Functional Group Mapping by Electron Beam Vibrational Spectroscopy from Nanoscale Volumes
- Source :
- Nano Letters; February 2020, Vol. 20 Issue: 2 p1272-1279, 8p
- Publication Year :
- 2020
-
Abstract
- Vibrational spectroscopies directly record details of bonding in materials, but spatially resolved methods have been limited to surface techniques for mapping functional groups at the nanoscale. Electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope presents a route to functional group analysis from nanoscale volumes using transmitted subnanometer electron probes. Here, we now use vibrational EELS to map distinct carboxylate and imidazolate linkers in a metal–organic framework (MOF) crystal–glass composite material. Domains <100 nm in size are observed using vibrational EELS, with recorded spatial resolution <15 nm at interfaces in the composite. This nanoscale functional group mapping is confirmed by correlated EELS at core ionization edges as well as X-ray energy dispersive spectroscopy for elemental mapping of the metal centers of the two constituent MOFs. These results present a complete nanoscale analysis of the building blocks of the MOF composite and establish spatially resolved functional group analysis using electron beam spectroscopy for crystalline and amorphous organic and metal–organic solids.
Details
- Language :
- English
- ISSN :
- 15306984 and 15306992
- Volume :
- 20
- Issue :
- 2
- Database :
- Supplemental Index
- Journal :
- Nano Letters
- Publication Type :
- Periodical
- Accession number :
- ejs52107030
- Full Text :
- https://doi.org/10.1021/acs.nanolett.9b04732