Back to Search Start Over

Soil Carbon Dynamics of Transition to Pacific Northwest Cellulosic Ethanol Feedstock Production

Authors :
Kendall, Joshua R.A.
Long, Dan S.
Collins, Harold P.
Pierce, Francis J.
Chatterjee, Amitava
Smith, Jeffrey L.
Young, Stephen L.
Source :
Soil Science Society of America Journal; January 2015, Vol. 79 Issue: 1 p272-281, 10p
Publication Year :
2015

Abstract

Cellulosic ethanol commercialization promises to produce energy from agricultural biomass. Available biomass depends on plant net primary productivity (NPP) and crop type, which maintain total soil organic carbon (TOC). Effect of crop‐type, residue removal, and NPP on ethanol yield and TOC levels were assessed by means of a three‐pool C model derived from long‐term soil incubation, acid hydrolysis, and curve fitting of a nonlinear regression model. A 2‐yr field study consisting of three input regimes (Low, Medium, or High NPP), three crops [corn (Zea maysL.), wheat (Triticum aestivum, L.), and switchgrass (SG, Panicum virgatumL., cv. Blackwell)], and two harvest levels [residue removed (R) or residue not removed (NR)] was conducted near Prosser, WA, USA. After 2 yr, ethanol yield of all crops were similar under Low NPP while ethanol yield of SG under Medium and High NPP was significantly greater than that of corn or wheat under the same NPP. Switchgrass significantly contributed to active [mean residence time (MRT) < 7 d] and resistant (MRT > 500 yr) soil C pools. Other crops had net zero or significantly reduced C pools. During a transition to cellulosic energy production, SG will contribute to soil C maintenance across a range of potential net productivity.

Details

Language :
English
ISSN :
03615995 and 14350661
Volume :
79
Issue :
1
Database :
Supplemental Index
Journal :
Soil Science Society of America Journal
Publication Type :
Periodical
Accession number :
ejs51835319
Full Text :
https://doi.org/10.2136/sssaj2014.04.0174