Back to Search Start Over

Radial Decomposition of Blade Vibration to Identify a Stall Flutter Source in a Transonic Fan

Authors :
Rendu, Q.
Vahdati, M.
Salles, L.
Source :
Journal of Turbomachinery; October 2019, Vol. 141 Issue: 10 p101011-101011, 1p
Publication Year :
2019

Abstract

This paper investigates the three dimensionality of the unsteady flow responsible for stall flutter instability. Nonlinear unsteady Reynolds-averaged Navier–Stokes (RANS) computations are used to predict the aeroelastic behavior of a fan blade at part speed. Flutter is experienced by the blades at low mass flow for the first flap mode at nodal diameter 2. The maximal energy exchange is located near the tip of the blade, at 90% span. The modeshape is radially decomposed to investigate the main source of instability. This decomposition method is validated for the first time in 3D using a time-marching nonlinear solver. The source of stall flutter is finally found at 65% span where the local vibration induces an unstable oscillation of the shock-wave of large amplitude. This demonstrates that the radial migration of the pressure fluctuations must be taken into account to predict stall flutter.

Details

Language :
English
ISSN :
0889504X and 15288900
Volume :
141
Issue :
10
Database :
Supplemental Index
Journal :
Journal of Turbomachinery
Publication Type :
Periodical
Accession number :
ejs51477111
Full Text :
https://doi.org/10.1115/1.4044484