Back to Search Start Over

A novel pectoral muscle segmentation from scanned mammograms using EMO algorithm

Authors :
Avuti, Santhos Kumar
Bajaj, Varun
Kumar, Anil
Singh, Girish Kumar
Source :
Biomedical Engineering Letters; November 2019, Vol. 9 Issue: 4 p481-496, 16p
Publication Year :
2019

Abstract

Mammogram images are majorly used for detecting the breast cancer. The level of positivity of breast cancer is detected after excluding the pectoral muscle from mammogram images. Hence, it is very significant to identify and segment the pectoral muscle from the mammographic images. In this work, a new multilevel thresholding, on the basis of electro-magnetism optimization (EMO) technique, is proposed. The EMO works on the principle of attractive and repulsive forces among the charges to develop the members of a population. Here, both Kapur’s and Otsu based cost functions are employed with EMO separately. These standard functions are executed over the EMO operator till the best solution is achieved. Thus, optimal threshold levels can be identified for the considered mammographic image. The proposed methodology is applied on all the three twenty-two mammogram images available in mammographic image analysis society dataset, and successful segmentation of the pectoral muscle is achieved for majority of the mammogram images. Hence, the proposed algorithm is found to be robust for variations in the pectoral muscle.

Details

Language :
English
ISSN :
20939868 and 2093985X
Volume :
9
Issue :
4
Database :
Supplemental Index
Journal :
Biomedical Engineering Letters
Publication Type :
Periodical
Accession number :
ejs51461699
Full Text :
https://doi.org/10.1007/s13534-019-00135-7