Back to Search Start Over

Kinetic basis for selective inhibition of cyclo-oxygenases

Authors :
GIERSE, James K.
KOBOLDT, Carol M.
WALKER, Mark C.
SEIBERT, Karen
ISAKSON, Peter C.
Source :
Biochemical Journal; May 1999, Vol. 339 Issue: 3 p607-614, 8p
Publication Year :
1999

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the formation of prostaglandins by cyclo-oxygenases (COX). The discovery of a second COX isoform (COX-2) associated with inflammation led to agents that selectively inhibit COX-2, e.g. celecoxib. We evaluated the kinetics of inhibition of celecoxib and several NSAIDs. Celecoxib displays classic competitive kinetics on COX-1 (Ki = 10-16 μM). An initial competitive interaction with COX-2 can also be discerned with celecoxib (Ki = 11-15 μM), followed by a time-dependent interaction leading to potent inhibition, characterized as inactivation (Kinact = 0.03-0.5 s-1). Half-maximal inhibition (IC50) using end-point assays reflects the competitive component on COX-1 (IC50 = 4-19 μM) and the inactivation component on COX-2 (IC50 = 0.003-0.006 μM). NSAIDs exhibit four distinct modes of COX inhibition based on kinetic behaviour: (1) competitive, e.g. ibuprofen; (2) weak binding, time-dependent, e.g. naproxen, oxicams; (3) tight binding, time-dependent, e.g. indomethacin; (4) covalent, e.g. aspirin. In addition, most NSAIDs display different kinetic behaviour for each isoform. Weakly binding inhibitors show variable behaviour in enzyme assays, with apparent inhibitory activity being markedly influenced by experimental conditions; determination of kinetic constants with this class is unreliable and IC50 values are strongly dependent on assay conditions. Although IC50 determinations are useful for structure/activity analyses, the complex and distinct mechanisms of enzyme inhibition of each COX isoform by the NSAIDs renders comparison of inhibitory activity on COX-1 and COX-2 using IC50 ratios of questionable validity.

Details

Language :
English
ISSN :
02646021 and 14708728
Volume :
339
Issue :
3
Database :
Supplemental Index
Journal :
Biochemical Journal
Publication Type :
Periodical
Accession number :
ejs51315123
Full Text :
https://doi.org/10.1042/bj3390607